Memristive Reservoir Computing Architecture for Epileptic Seizure Detection

被引:31
作者
Merkel, Cory [1 ]
Saleh, Qutaiba [1 ]
Donahue, Colin [1 ]
Kudithipudi, Dhireesha [1 ]
机构
[1] Rochester Inst Technol, NanoComp Res Lab, Rochester, NY 14623 USA
来源
5TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, 2014 BICA | 2014年 / 41卷
基金
美国国家科学基金会;
关键词
Reservoir Computing; Echo State Networks; Memristors; Epilepsy Seizure; Seizure detection; STATE;
D O I
10.1016/j.procs.2014.11.110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Echo state networks (ESN) or reservoirs, are random, recurrent neural network topologies that integrate temporal data over short time windows by operating on the edge of chaos. Recently, there is a significant effort on the mathematical modeling and software topologies of the reservoirs. However, hardware reservoir fabrics are essential to deploy in energy constrained environments. In this paper, we investigate a hardware reservoir with bi-stable memristive synapses. In particular, we demonstrate a scalable hardware model for detecting real-time epileptic seizures in human models. The performance of the proposed reservoir hardware is evaluated for absent seizure signals with 85% accuracy.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 12 条
[1]  
Andrzejak Ralph G., 2001, PHYS REV E, V64
[2]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[3]  
Buteneers Pieter, 2008, CIRCUITS SYSTEMS SIG
[4]  
Ishii K, 2004, OCEANS '04 MTS/IEEE TECHNO-OCEAN '04, VOLS 1- 2, CONFERENCE PROCEEDINGS, VOLS. 1-4, P1205
[5]  
Jaeger H., 2001, 148 GMD GERM NAT RES, V148, P13, DOI DOI 10.1385/1-59259-208-2:013
[6]   The global burden of epilepsy [J].
Leonardi, M ;
Ustun, TB .
EPILEPSIA, 2002, 43 :21-25
[7]   Reservoir Computing Trends [J].
Lukoševičius, Mantas ;
Jaeger, Herbert ;
Schrauwen, Benjamin .
KI - Kunstliche Intelligenz, 2012, 26 (04) :365-371
[8]   Minimum Complexity Echo State Network [J].
Rodan, Ali ;
Tino, Peter .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (01) :131-144
[9]  
Scherer S, 2008, LECT NOTES ARTIF INT, V5064, P205, DOI 10.1007/978-3-540-69939-2_20
[10]   Automatic speech recognition using a predictive echo state network classifier [J].
Skowronski, Mark D. ;
Harris, John G. .
NEURAL NETWORKS, 2007, 20 (03) :414-423