Improved ZZ a posteriori error estimators for diffusion problems: Conforming linear elements

被引:12
作者
Cai, Zhiqiang [1 ]
He, Cuiyu [1 ]
Zhang, Shun [2 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Finite element method; A posteriori error estimation; Adaptive mesh refinement; Diffusion problem; SUPERCONVERGENT PATCH RECOVERY; POINTWISE GRADIENT ERROR; INTERFACE PROBLEMS; ELLIPTIC-EQUATIONS; IRREGULAR MESHES; PART II; GRIDS;
D O I
10.1016/j.cma.2016.10.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In Cai and Zhang (2009), we introduced and analyzed an improved Zienkiewicz Zhu (ZZ) estimator for the conforming linear finite element approximation to elliptic interface problems. The estimator is based on the piecewise "constant" flux recovery in the H(div; Omega) conforming finite element space. This paper extends the results of Cai and Zhang (2009) to diffusion problems with full diffusion tensor and to the flux recovery both in piecewise constant and piecewise linear H(div) space. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:433 / 449
页数:17
相关论文
共 36 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]  
Babuska I., 2001, NUMER MATH SCI COMPU
[3]  
Bahriawati C., 2005, COMPUT METHODS APPL, V5, P333, DOI DOI 10.2478/CMAM-2005-0016)
[4]   Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids [J].
Bank, Randolph E. ;
Xu, Jinchao ;
Zheng, Bin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :2032-2046
[5]   Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence [J].
Bank, RE ;
Xu, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2294-2312
[6]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[7]  
BOFFI D., 2013, MIXED FINITE ELEMENT, V44
[8]  
Braess D, 2008, MATH COMPUT, V77, P651, DOI 10.1090/S0025-5718-07-02080-7
[9]   ROBUST EQUILIBRATED RESIDUAL ERROR ESTIMATOR FOR DIFFUSION PROBLEMS: CONFORMING ELEMENTS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (01) :151-170
[10]   Robust residual- and recovery-based a posteriori error estimators for interface problems with flux jumps [J].
Cai, Zhiqiang ;
Zhang, Shun .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) :476-491