The Rogers-Ramanujan continued fraction

被引:23
作者
Berndt, BC
Chan, HH
Huang, SS
Kang, SY
Sohn, J
Son, SH
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[3] Natl Chang Hua Univ Educ, Dept Math, Changhua, Taiwan
关键词
Rogers-Ramanujan continued fraction; Ramanujan's lost notebook; theta-function; modular equation; explicit evaluation;
D O I
10.1016/S0377-0427(99)00033-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A survey of many theorems on the Rogers-Ramanujan continued fraction is provided. Emphasis is given to results from Ramanujan's lost notebook that have only recently been proved. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 36 条
[11]  
BERNDT BC, IN PRESS T AM MATH S
[12]  
BERNDT BC, CRM P LECT NOTES
[13]  
BERNDT BC, IN PRESS Q SERIES CU
[14]   NEW PROOFS OF RAMANUJAN PARTITION-IDENTITIES FOR MODULI-5 AND MODULI-7 [J].
CHAN, HH .
JOURNAL OF NUMBER THEORY, 1995, 53 (01) :144-158
[15]  
Huang SS, 1997, ACTA ARITH, V80, P49
[16]   Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan's lost notebook [J].
Kang, SY .
RAMANUJAN JOURNAL, 1999, 3 (01) :91-111
[17]  
KANG SY, IN PRESS ACTA ARITH
[18]  
Lorentzen L., 1992, Continued Fractions with Applications
[19]  
Ramanathan K.G., 1987, J. Indian Math. Soc, V52, P71
[20]   ON RAMANUJAN CONTINUED-FRACTION [J].
RAMANATHAN, KG .
ACTA ARITHMETICA, 1984, 43 (03) :209-226