Instabilities of wormholes and regular black holes supported by a phantom scalar field

被引:169
作者
Bronnikov, K. A. [1 ,2 ]
Konoplya, R. A. [3 ,4 ]
Zhidenko, A. [5 ]
机构
[1] VNIIMS, Ctr Gravitat & Fundamental Metrol, Moscow 119361, Russia
[2] PFUR, Inst Gravitat & Cosmol, Moscow 117198, Russia
[3] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England
[4] Ctr Estudios Cient, Valdivia, Chile
[5] Univ Fed ABC UFABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, Brazil
关键词
QUASI-NORMAL MODES; PERTURBATIONS; UNIVERSES; COSMOLOGY; STABILITY; COLLAPSE; LAMBDA; ENERGY;
D O I
10.1103/PhysRevD.86.024028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We test the stability of various wormholes and black holes supported by a scalar field with a negative kinetic term. The general axial perturbations and the monopole type of polar perturbations are considered in the linear approximation. Two classes of objects are considered: (i) wormholes with flat asymptotic behavior at one end and anti-de Sitter on the other (Minkowski-anti-de Sitter wormholes) and (ii) regular black holes with asymptotically de Sitter expansion far beyond the horizon (the so-called black universes). A difficulty in such stability studies is that the effective potential for perturbations forms an infinite wall at throats, if any. Its regularization is in general possible only by numerical methods, and such a method is suggested in a general form and used in the present paper. As a result, we have shown that all configurations under study are unstable under spherically symmetric perturbations, except for a special class of black universes where the event horizon coincides with the minimum of the area function. For this stable family, the frequencies of quasinormal modes of axial perturbations are calculated.
引用
收藏
页数:11
相关论文
共 63 条
[1]   On a class of stable, traversable Lorentzian wormholes in classical general relativity -: art. no. 104010 [J].
Armendáriz-Picón, C .
PHYSICAL REVIEW D, 2002, 65 (10) :10
[2]   Cosmology - The cosmic triangle: Revealing the state of the universe [J].
Bahcall, NA ;
Ostriker, JP ;
Perlmutter, S ;
Steinhardt, PJ .
SCIENCE, 1999, 284 (5419) :1481-1488
[3]   EXACT BLACK-HOLE SOLUTION WITH SELF-INTERACTING SCALAR FIELD [J].
BECHMANN, O ;
LECHTENFELD, O .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (06) :1473-1481
[4]   SPACE-TIME STRUCTURE OF A STATIC SPHERICALLY SYMMETRIC SCALAR FIELD [J].
BERGMANN, O ;
LEIPNIK, R .
PHYSICAL REVIEW, 1957, 107 (04) :1157-1161
[5]   Cold black holes and conformal continuations [J].
Bronnikov, K. A. ;
Chernakova, M. S. ;
Fabris, J. C. ;
Pinto-Neto, N. ;
Rodrigues, M. E. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (01) :25-42
[6]   Regular black holes and black universes [J].
Bronnikov, K. A. ;
Dehnen, H. ;
Melnikov, V. N. .
GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (07) :973-987
[7]   Regular phantom black holes [J].
Bronnikov, K. A. ;
Fabris, J. C. .
PHYSICAL REVIEW LETTERS, 2006, 96 (25)
[8]   On the stability of scalar-vacuum space-times [J].
Bronnikov, K. A. ;
Fabris, J. C. ;
Zhidenko, A. .
EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (11) :1-12
[9]   Black universes with trapped ghosts [J].
Bronnikov, K. A. ;
Donskoy, E. V. .
GRAVITATION & COSMOLOGY, 2011, 17 (02) :176-180
[10]  
Bronnikov K. A., 2002, Gravitation & Cosmology, V8, P107