Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8

被引:143
作者
Dvorak, Zdenek [1 ]
Postle, Luke [2 ]
机构
[1] Charles Univ Prague, Prague, Czech Republic
[2] Univ Waterloo, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Correspondence coloring; DP-coloring; List coloring; Planar graphs;
D O I
10.1016/j.jctb.2017.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new variant of graph coloring called correspondence colming which generalizes list coloring and allows for reductions previously only possible for ordinary coloring. Using this tool, we prove that excluding cycles of lengths 4 to 8 is sufficient to guarantee 3-choosability of a planar graph, thus answering a question of Borodin. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 18 条
[11]   Steinberg's Conjecture is false [J].
Cohen-Addad, Vincent ;
Hebdige, Michael ;
Kral, Daniel ;
Li, Zhentao ;
Salgado, Esteban .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 :452-456
[12]  
Grtzsch H., 1959, WISS Z M LUTHER U HA, V8, P109
[13]  
Steinberg R., 1993, Quo Vadis. Gr. Theory Ann. Discrete Math., V55, P211, DOI DOI 10.1016/S0167-5060(08)70391-1
[14]   EVERY PLANAR GRAPH IS 5-CHOOSABLE [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (01) :180-181
[15]   3-LIST-COLORING PLANAR GRAPHS OF GIRTH-5 [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :101-107
[16]   A non-3-choosable planar graph without cycles of length 4 and 5 [J].
Voigt, M. .
DISCRETE MATHEMATICS, 2007, 307 (7-8) :1013-1015
[17]   A NOT 3-CHOOSABLE PLANAR GRAPH WITHOUT 3-CYCLES [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :325-328
[18]   LIST COLORINGS OF PLANAR GRAPHS [J].
VOIGT, M .
DISCRETE MATHEMATICS, 1993, 120 (1-3) :215-219