Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8

被引:143
作者
Dvorak, Zdenek [1 ]
Postle, Luke [2 ]
机构
[1] Charles Univ Prague, Prague, Czech Republic
[2] Univ Waterloo, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Correspondence coloring; DP-coloring; List coloring; Planar graphs;
D O I
10.1016/j.jctb.2017.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new variant of graph coloring called correspondence colming which generalizes list coloring and allows for reductions previously only possible for ordinary coloring. Using this tool, we prove that excluding cycles of lengths 4 to 8 is sufficient to guarantee 3-choosability of a planar graph, thus answering a question of Borodin. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 18 条
[1]  
Alon N, 2000, RANDOM STRUCT ALGOR, V16, P364
[2]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[3]  
Bernshteyn A., 2016, ARXIV160909122
[4]   ON DP-COLORING OF GRAPHS AND MULTIGRAPHS [J].
Bernshteyn, A. Yu. ;
Kostochka, A. V. ;
Pron, S. P. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (01) :28-36
[5]   The asymptotic behavior of the correspondence chromatic number [J].
Bernshteyn, Anton .
DISCRETE MATHEMATICS, 2016, 339 (11) :2680-2692
[6]  
Bonamy M., 2016, COLOURING GRAP UNPUB
[7]   Colorings of plane graphs: A survey [J].
Borodin, O. V. .
DISCRETE MATHEMATICS, 2013, 313 (04) :517-539
[8]   Planar graphs without 5-and 7-cycles and without adjacent triangles are 3-colorable [J].
Borodin, O. V. ;
Glebov, A. N. ;
Montassier, M. ;
Raspaud, A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) :668-673
[9]  
Borodin OV, 1996, J GRAPH THEOR, V21, P183
[10]   Planar graphs without cycles of length from 4 to 7 are 3-colorable [J].
Borodin, OV ;
Glebov, AN ;
Raspaud, A ;
Salavatipour, MR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) :303-311