Energy materials

被引:40
作者
Bruce, PG [1 ]
机构
[1] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.solidstatesciences.2005.04.018
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Fundamental advances in the solid state chemistry of ionically conducting solids are essential if we are to address the problem of clean energy supply and hence global warming. Several new directions are discussed in this context. Recently, we have synthesised, for the first time, TiO2 nanowires. They possess diameters between 20 and 40 nm and may be up to several microns in length. The crystal structure is that of the less well known polymorph TiO2-B. The nanowires are excellent intercalation hosts for Li, reaching a composition of Li0.91TiO2-B (corresponding to 305 mAh g(-1) of charge stored), almost twice the capacity of anatase. After a small irreversible capacity loss on the first cycle, reversibility of intercalation is excellent. This material is of interest as a potential negative electrode in rechargeable lithium batteries. The first synthesis of ordered mesoporous Fe2O3 materials is described. Two forms, exhibiting respectively pores ordered in 2 and 3 dimensions have been characterised. Metal-polyether complexes (polymer electrolytes), the solid state analogues of the crown ether complexes, are discussed. For some 30 years it was believed that only amorphous lithium-polyether complexes supported ionic conductivity, recently we have shown that this is incorrect. We have reported the first example of crystalline polymer electrolytes supporting ionic conductivity. New developments involving the doping of stoichiometric metal-polyether complexes, specifically PEO6:LiXF6, where X = P, As, Sb, are discussed that enhance the conductivity by up to 2 orders of magnitude. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:1456 / 1463
页数:8
相关论文
共 44 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]   Structure of the polymer electrolyte poly(ethylene oxide)(3): LiN(SO2CF3)(2) determined by powder diffraction using a powerful Monte Carlo approach [J].
Andreev, YG ;
Lightfoot, P ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 1996, (18) :2169-2170
[3]   Ab initio solution of a complex crystal structure from powder-diffraction data using simulated-annealing method and a high degree of molecular flexibility [J].
Andreev, YG ;
MacGlashan, GS ;
Bruce, PG .
PHYSICAL REVIEW B, 1997, 55 (18) :12011-12017
[4]   A general Monte Carlo approach to structure solution from powder-diffraction data: Application to poly(ethylene oxide)(3):LiN(SO2CF3)(2) [J].
Andreev, YG ;
Lightfoot, P ;
Bruce, PG .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1997, 30 :294-305
[5]   SYNTHESIS OF HEXAGONALLY PACKED MESOPOROUS TIO2 BY A MODIFIED SOL-GEL METHOD [J].
ANTONELLI, DM ;
YING, JY .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1995, 34 (18) :2014-2017
[6]   Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants [J].
Antonelli, DM .
MICROPOROUS AND MESOPOROUS MATERIALS, 1999, 30 (2-3) :315-319
[7]   Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves [J].
Antonelli, DM ;
Nakahira, A ;
Ying, JY .
INORGANIC CHEMISTRY, 1996, 35 (11) :3126-3136
[8]  
ARICO AS, IN PRESS NATURE MAT
[9]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[10]  
ARMSTRONG AR, IN PRESS ADV MAT