Nonlinear eigenvalue problems for coupled Helmholtz equations modeling gradient-index graphene waveguides

被引:3
作者
Song, Jung Heon [1 ]
Maier, Matthias [2 ]
Luskin, Mitchell [1 ]
机构
[1] Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USA
[2] Texas A&M Univ, Dept Math, 3368 TAMU, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Guided mode; Time-harmonic Maxwell's equations; Surface plasmon polariton; Nonlinear eigenvalue problem; Quartic eigenvalue problem; Quadratification; FINITE-ELEMENT-ANALYSIS; SURFACE-PLASMON; MODES; FIELDS;
D O I
10.1016/j.jcp.2020.109871
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We discuss a quartic eigenvalue problem arising in the context of an optical waveguiding problem involving atomically thick 2D materials. The waveguide configuration we consider consists of a gradient-index (spatially dependent) dielectric equipped with conducting interior interfaces. This leads to a quartic eigenvalue problem with mixed transverse electric and transverse magnetic modes, and strongly coupled electric and magnetic fields. We derive a weak formulation of the quartic eigenvalue problem and introduce a numerical solver based on a quadratification approach in which the quartic eigenvalue problem is transformed to a spectrally equivalent companion problem. We verify our numerical framework against analytical solutions for prototypical geometries. As a practical example, we demonstrate how an improved quality factor (defined by the ratio of the real and the imaginary part of the computed eigenvalues) can be obtained for a family of gradient-index host materials with internal conducting interfaces. We outline how this result lays the groundwork for solving related shape optimization problems. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 38 条
  • [1] [Anonymous], 2003, Numerical Mathematics and Scientific Computation
  • [2] The deal.II library, Version 9.1
    Arndt, Daniel
    Bangerth, Wolfgang
    Clevenger, Thomas C.
    Davydov, Denis
    Fehling, Marc
    Garcia-Sanchez, Daniel
    Harper, Graham
    Heister, Timo
    Heltai, Luca
    Kronbichler, Martin
    Kynch, Ross Maguire
    Maier, Matthias
    Pelteret, Jean-Paul
    Turcksin, Bruno
    Wells, David
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (04) : 203 - 213
  • [3] ROBUST RAYLEIGH QUOTIENT MINIMIZATION AND NONLINEAR EIGENVALUE PROBLEMS
    Bai, Zhaojun
    Lu, Ding
    Vandereycken, Bart
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) : A3495 - A3522
  • [4] Balay S, 2021, ANL2139REV316
  • [5] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [6] A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE
    Bludov, Yu V.
    Ferreira, Aires
    Peres, N. M. R.
    Vasilevskiy, M. I.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (10):
  • [7] Chew W. C., 1999, Waves and Fields in Inhomogenous Media
  • [8] The perfectly matched layer in curvilinear coordinates
    Collino, F
    Monk, P
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) : 2061 - 2090
  • [9] FINITE-ELEMENT 3 DIMENSIONAL MAGNETIC-FIELD COMPUTATION
    COULOMB, JL
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1981, 17 (06) : 3241 - 3246
  • [10] DIFFERENTIAL FORMS INSPIRED DISCRETIZATION FOR FINITE ELEMENT ANALYSIS OF INHOMOGENEOUS WAVEGUIDES
    Dai, Qi I.
    Chew, Weng Cho
    Jiang, Li Jun
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2013, 143 : 745 - 760