Equation of state of LiNi0.5Mn1.5O4 at high pressure

被引:1
作者
Xiong, Lun [1 ]
Chen, Guangping [1 ]
Tang, Yumei [1 ]
Hao, Jiabo [1 ]
Wang, Lunlang [1 ]
Tang, Jialing [1 ]
Tian, Can [2 ]
Shu, Xiaohui [3 ]
Liu, Xingquan [3 ]
Zhang, Xinxin [4 ]
Yu, Guoliang [4 ]
Zhao, Hongyuan [5 ]
Cui, Weiran [6 ]
机构
[1] Sichuan Univ Arts & Sci, Sch Intelligent Mfg, Dazhou 635000, Peoples R China
[2] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[3] Univ Elect Sci & Technol, Sch Mat & Energy, Chengdu 610054, Peoples R China
[4] Shenyang Univ Chem Technol, Math & Phys Dept, Shenyang 110142, Peoples R China
[5] Henan Inst Sci & Technol, Res Ctr Adv Mat & Electrochem Technol, Sch Mech & Elect Engn, Xinxiang 453003, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
关键词
Equation of state; LiNi0.5Mn1.5O4; High pressure; Diamond anvil cell; In-situ XRD; In-situ Raman spectroscopy; LITHIUM; INTERCALATION;
D O I
10.1016/j.ssc.2020.114045
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Investigations of equation of state (EOS) of LiNi0.5Mn1.5O4 under high pressure have been performed using synchrotron radiation X-ray diffraction (XRD) in a diamond anvil cell (DAC) at ambient temperature, density functional theory (DFT) calculations and Raman spectroscopy. It is found that the cubic structure maintains to the maximum pressure of 27.3 GPa by XRD and 21.0 GPa by Raman scattering. The XRD data yields a bulk modulus K-0 = 146.2(7.5) GPa with K-0' = 14.6(1.7). In addition, the high-pressure compression behavior of LiNi0.5Mn1.5O4 has been studied by first principles calculations. And the derived bulk modulus of LiNi0.5Mn1.5O4 is 131(1) GPa.
引用
收藏
页数:4
相关论文
共 24 条
[1]   FINITE STRAIN ISOTHERM AND VELOCITIES FOR SINGLE-CRYSTAL AND POLYCRYSTALLINE NACL AT HIGH-PRESSURES AND 300-DEGREE-K [J].
BIRCH, F .
JOURNAL OF GEOPHYSICAL RESEARCH, 1978, 83 (NB3) :1257-1268
[2]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[3]   Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa [J].
Duffy, TS ;
Shen, GY ;
Heinz, DL ;
Shu, JF ;
Ma, YZ ;
Mao, HK ;
Hemley, RJ ;
Singh, AK .
PHYSICAL REVIEW B, 1999, 60 (22) :15063-15073
[4]   High pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides [J].
Fell, C. R. ;
Lee, D. H. ;
Meng, Y. S. ;
Gallardo-Amores, J. M. ;
Moran, E. ;
Arroyo-de Dompablo, M. E. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :6214-6224
[5]   Two-dimensional detector software: From real detector to idealised image or two-theta scan [J].
Hammersley, AP ;
Svensson, SO ;
Hanfland, M ;
Fitch, AN ;
Hausermann, D .
HIGH PRESSURE RESEARCH, 1996, 14 (4-6) :235-248
[6]   Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications [J].
Huang, B ;
Jang, YI ;
Chiang, YM ;
Sadoway, DR .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (12) :1365-1369
[7]   Factors that affect Li mobility in layered lithium transition metal oxides [J].
Kang, Kisuk ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2006, 74 (09)
[8]   Electrodes with high power and high capacity for rechargeable lithium batteries [J].
Kang, KS ;
Meng, YS ;
Bréger, J ;
Grey, CP ;
Ceder, G .
SCIENCE, 2006, 311 (5763) :977-980
[9]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[10]   Synthesis of LiNi0.5Mn1.5O4 nano/microspheres with adjustable hollow structures for lithium-ion battery [J].
Li, Shiyou ;
Geng, Shan ;
Zhao, Jiachen ;
Cui, Xiaoling .
IONICS, 2018, 24 (03) :681-688