Molecular intermittent dynamics of interfacial water: probing adsorption and bulk confinement

被引:21
作者
Levitz, P. [1 ,2 ]
Bonnaud, P. A. [3 ,4 ,6 ]
Cazade, P. -A. [5 ]
Pellenq, R. J. -M. [3 ,4 ,6 ]
Coasne, B. [5 ,6 ]
机构
[1] Univ Paris 06, PECSA Lab, F-75252 Paris, France
[2] CNRS, F-75252 Paris, France
[3] CNRS, CIMAP, F-13288 Luminy, France
[4] Aix Marseille Univ, F-13288 Luminy, France
[5] Univ Montpellier, Inst Charles Gerhardt, CNRS, ENSCM, F-34296 Montpellier, France
[6] MIT, CNRS, Cambridge, MA 02139 USA
关键词
MONTE-CARLO-SIMULATION; CYCLING NMR RELAXOMETRY; CARBON NANOTUBE MEMBRANES; SINGLE CYLINDRICAL PORE; NEUTRON-SCATTERING; PHASE-TRANSITIONS; POROUS SILICA; HYDROPHILIC SURFACES; GLASS; DIFFUSION;
D O I
10.1039/c3sm51940f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Numerous natural and manufactured systems such as colloidal suspensions, geological pore networks, catalysts, and nanofluidic devices develop a large and sometimes complex interface strongly influencing the dynamics of the fluid entrapped inside these materials. A coarse grain picture of this molecular dynamics can be considered as an intermittence of adsorption steps and bulk relocations from one point to another point of the interface. Adsorption statistics such as the adsorption time distribution and its first moment reflect the degree of interaction of the molecule with the colloidal interface. Relocation statistics strongly depend on the shape of the pore, the surface forces and the bulk confinement. In this paper, a theoretical analysis of this intermittent dynamics is presented. A direct comparison with molecular dynamics simulations is proposed in the case of liquid water confined inside a hydrophilic substrate (silica slit pore with hydroxylated surfaces) or inside a hydrophobic substrate (carbon nanotube). Analysis of this intermittent dynamics allows quantification of the level of interaction of the vicinal water with the solid interface inside an independent adsorption region in exchange with the confined bulk fluid. The possibility of experimentally probing this dynamics using NMR relaxometry is emphasized.
引用
收藏
页码:8654 / 8663
页数:10
相关论文
共 97 条
[1]  
Abragam A., 1983, PRINCIPLES NUCL MAGN
[2]   Freezing of Water Confined at the Nanoscale [J].
Alabarse, F. G. ;
Haines, J. ;
Cambon, O. ;
Levelut, C. ;
Bourgogne, D. ;
Haidoux, A. ;
Granier, D. ;
Coasne, B. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[3]   Dynamic Behavior of Interfacial Water at the Silica Surface [J].
Argyris, Dimitrios ;
Cole, David R. ;
Striolo, Alberto .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45) :19591-19600
[4]   Hydration Structure on Crystalline Silica Substrates [J].
Argyris, Dimitrios ;
Cole, David R. ;
Striolo, Alberto .
LANGMUIR, 2009, 25 (14) :8025-8035
[5]   Water as an active constituent in cell biology [J].
Ball, Philip .
CHEMICAL REVIEWS, 2008, 108 (01) :74-108
[6]   Dynamics and energetics of hydrophobically confined water [J].
Bauer, Brad A. ;
Ou, Shuching ;
Patel, Sandeep ;
Siva, Karthik .
PHYSICAL REVIEW E, 2012, 85 (05)
[7]   STRUCTURAL STUDY OF WATER CONFINED IN POROUS-GLASS BY NEUTRON-SCATTERING [J].
BELLISSENTFUNEL, MC ;
LAL, J ;
BOSIO, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (05) :4246-4252
[8]   Mean First-Passage Time of Surface-Mediated Diffusion in Spherical Domains [J].
Benichou, O. ;
Grebenkov, D. S. ;
Levitz, P. E. ;
Loverdo, C. ;
Voituriez, R. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (04) :657-685
[9]   Optimal Reaction Time for Surface-Mediated Diffusion [J].
Benichou, O. ;
Grebenkov, D. ;
Levitz, P. ;
Loverdo, C. ;
Voituriez, R. .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[10]  
Berendsen HJ, 1981, Interaction models for water in relation to protein hydration, DOI DOI 10.1007/978-94-015-7658-1_21