Tsallis entropy: how unique?

被引:17
作者
Abe, S [1 ]
机构
[1] Univ Tsukuba, Inst Phys, Tsukuba 3058571, Japan
关键词
generalized entropies; composability; stability; axioms and uniqueness theorem for Tsallis entropy;
D O I
10.1007/s00161-003-0153-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
It is shown how, among a class of generalized entropies, the Tsallis entropy can uniquely be identified by the principles of thermodynamics, the concept of stability, and the axiomatic foundations.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 24 条
[1]   Axioms and uniqueness theorem for Tsallis entropy [J].
Abe, S .
PHYSICS LETTERS A, 2000, 271 (1-2) :74-79
[2]   Quantum entanglement inferred by the principle of maximum nonadditive entropy [J].
Abe, S ;
Rajagopal, AK .
PHYSICAL REVIEW A, 1999, 60 (05) :3461-3466
[3]   Correlation induced by Tsallis' nonextensivity [J].
Abe, S .
PHYSICA A, 1999, 269 (2-4) :403-409
[4]   Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification [J].
Abe, S .
PHYSICAL REVIEW A, 2003, 68 (03) :3
[5]   Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies:: A basis for q-exponential distributions -: art. no. 046134 [J].
Abe, S .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[6]   Nonadditive entropies and quantum entanglement [J].
Abe, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 306 (1-4) :316-322
[7]   Towards nonadditive quantum information theory [J].
Abe, S ;
Rajagopal, AK .
CHAOS SOLITONS & FRACTALS, 2002, 13 (03) :431-435
[8]   Nonadditive conditional entropy and its significance for local realism [J].
Abe, S ;
Rajagopal, AK .
PHYSICA A, 2001, 289 (1-2) :157-164
[9]   General pseudoadditivity of composable entropy prescribed by the existence of equilibrium [J].
Abe, S .
PHYSICAL REVIEW E, 2001, 63 (06) :1-061105
[10]   Frontier between separability and quantum entanglement in a many spin system [J].
Alcaraz, FC ;
Tsallis, C .
PHYSICS LETTERS A, 2002, 301 (3-4) :105-111