Tensor Analysis and Fusion of Multimodal Brain Images

被引:59
作者
Karahan, Esin [1 ]
Rojas-Lopez, Pedro A. [2 ]
Bringas-Vega, Maria L. [3 ]
Valdes-Hernandez, Pedro A. [2 ]
Valdes-Sosa, Pedro A. [3 ]
机构
[1] Bogazici Univ, Inst Biomed Engn, TR-34684 Istanbul, Turkey
[2] Cuban Neurosci Ctr, Havana 10600, Cuba
[3] Univ Elect Sci & Technol China, Ctr Informat Med, Key Lab NeuroInformat, Minist Educ, Chengdu 610054, Peoples R China
关键词
Autoregressive processes; Bayesian models; Bayesian statistics; EEG/fMRI; electroencephalography; Granger causality; magnetic resonance imaging; multidimensional systems; multimodal data; N-PLS; PARAFAC; tensor decomposition; tensor network; INDEPENDENT COMPONENT ANALYSIS; RESOLUTION ELECTROMAGNETIC TOMOGRAPHY; GRANGER CAUSALITY ANALYSIS; ALTERNATING LEAST-SQUARES; EFFECTIVE CONNECTIVITY; NONNEGATIVE MATRIX; EEG/FMRI ANALYSIS; PARALLEL FACTOR; DIFFUSION MRI; EEG;
D O I
10.1109/JPROC.2015.2455028
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions-posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS, etc.). We emphasize that the multimodal, multiscale nature of neuroimaging data is well reflected by a multiway (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms.'' We introduce Markov-Penrose diagrams-an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via multiway partial least squares and coupled matrix-tensor factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.
引用
收藏
页码:1531 / 1559
页数:29
相关论文
共 171 条
[1]  
Acar E., 2014, MATLAB CMTF TOOLBOX
[2]   Unsupervised Multiway Data Analysis: A Literature Survey [J].
Acar, Evrim ;
Yener, Buelent .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (01) :6-20
[3]   Understanding data fusion within the framework of coupled matrix and tensor factorizations [J].
Acar, Evrim ;
Rasmussen, Morten Arendt ;
Savorani, Francesco ;
Naes, Tormod ;
Bro, Rasmus .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 129 :53-63
[4]   A scalable optimization approach for fitting canonical tensor decompositions [J].
Acar, Evrim ;
Dunlavy, Daniel M. ;
Kolda, Tamara G. .
JOURNAL OF CHEMOMETRICS, 2011, 25 (02) :67-86
[5]   ON USE OF A LINEAR MODEL FOR IDENTIFICATION OF FEEDBACK SYSTEMS [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1968, 20 (03) :425-&
[6]   BigBrain: An Ultrahigh-Resolution 3D Human Brain Model [J].
Amunts, Katrin ;
Lepage, Claude ;
Borgeat, Louis ;
Mohlberg, Hartmut ;
Dickscheid, Timo ;
Rousseau, Marc-Etienne ;
Bludau, Sebastian ;
Bazin, Pierre-Louis ;
Lewis, Lindsay B. ;
Oros-Peusquens, Ana-Maria ;
Shah, Nadim J. ;
Lippert, Thomas ;
Zilles, Karl ;
Evans, Alan C. .
SCIENCE, 2013, 340 (6139) :1472-1475
[7]   The N-way Toolbox for MATLAB [J].
Andersson, CA ;
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (01) :1-4
[8]  
[Anonymous], 1998, Multi-way analysis in the food industry, model, algorithms and applications
[9]  
[Anonymous], 2011, Networks of the brain
[10]  
[Anonymous], 2010, Simultaneous EEG and fMRI: Recording, analysis and applications