Application Potential of Fuzzy and Regression in Optimization of MRR and Surface Roughness during Machining of C45 Steel

被引:2
作者
Madival, Santosh [1 ]
Ahmed, Mohammed Riyaz [2 ]
Halappa, Manjunath Lingappa [1 ]
Marulaiah, Lokesha [3 ]
机构
[1] REVA Univ, Sch Mech Engn, Bangalore 560064, Karnataka, India
[2] REVA Univ, Sch Elect & Commun Engn, Bangalore 560064, Karnataka, India
[3] Mangalore Inst Technol & Engn, Dept Mech Engn, Mangalore 574225, Moodbidri, India
来源
PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING | 2019年 / 63卷 / 02期
关键词
surface roughness; material removal rate; regression; fuzzy logic; DESIGN;
D O I
10.3311/PPme.13171
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the machining industry, coolant has an important role due to their lubrication, cooling and chip removal functions. Using coolant can improve machining process efficiency, tool life, surface quality and it can reduce cutting forces and vibrations. However, health and environmental problems are encountered with the use of coolants. Hence, there has been a high demand for deep cryogenic treatment to reduce these harmful effects. For this purpose, -196 degrees C LN2 gas is used to improve machining performance. This study focuses on the prediction of surface roughness and material removal rate with cryogenically treated M2 HSS tool using fuzzy logic and regression model. The turning experiments are conducted according to Taguchi's L9 orthogonal array. Surface roughness and material removal rate during machining of C45 steel with HSS tool are measured. Cutting speed, feed rate, and depth of cut are considered as machining parameters. A model depended on a regression model is established and the results obtained from the regression model are compared with the results based on fuzzy logic and experiment. The effectiveness of regression models and fuzzy logic has been determined by analyzing the correlation coefficient and by comparing experimental results. Regression model gives closer values to experimentally measured values than fuzzy logic. It has been concluded that regression-based modeling can be used to predict the surface roughness successfully.
引用
收藏
页码:132 / 139
页数:8
相关论文
共 12 条
[1]  
Bridson R, 2002, ACM T GRAPHIC, V21, P594, DOI 10.1145/566570.566623
[2]   Robust parameter design and multi-objective optimization of laser beam cutting for aluminium alloy sheet [J].
Dubey, Avanish Kumar ;
Yadava, Vinod .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008, 38 (3-4) :268-277
[3]  
Lee YY, 1995, OREGON CONFERENCE MONOGRAPH 1995, VOL 7, FEBRUARY 1995, P55
[4]  
Mertler C.A., 2016, ADV MULTIVARIATE STA
[5]   Effect of deep cryogenic treatment on the mechanical properties of tool steels [J].
Molinari, A ;
Pellizzari, M ;
Gialanella, S ;
Straffelini, G ;
Stiasny, KH .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 118 (1-3) :350-355
[6]  
Muyan- Ozcelik P., 2010, APPL GPU COMPUTING S, P497, DOI [10.1016/B978-0-12-384988-5.00032-2, DOI 10.1016/B978-0-12-384988-5.00032-2]
[7]   Big cat genomics [J].
O'Brien, SJ ;
Johnson, WE .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2005, 6 :407-429
[8]  
Santosh, 2018, IOP Conference Series: Materials Science and Engineering, V376, DOI 10.1088/1757-899X/376/1/012098
[9]  
Selvaraj DP, 2010, J ENG SCI TECHNOL, V5, P293
[10]   Animation: The New Performance? [J].
Silvio, Teri .
JOURNAL OF LINGUISTIC ANTHROPOLOGY, 2010, 20 (02) :422-438