An explicit Backlund transformation of Burgers equation with applications

被引:0
作者
Lü, ZS [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, Beijing 100080, Peoples R China
关键词
Burgers equation; Backlund transformation; exact solution;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, an explicit Bicklund transformation (BT) of the Burgers equation is obtained by using the further extended tanh method [Phys. Lett. A 307 (2003) 269; Chaos, Solitons & Fractals 17 (2003) 669]. Based on the BT and some newly obtained seed solutions, infinite sequences of exact solutions for the Burgers equation are generated. Further more, this BT of the Burgers equation is applied to solve the variant Boussinesq equations and the approximate equations of long water wave.
引用
收藏
页码:987 / 989
页数:3
相关论文
共 27 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]  
Bateman H., 1915, Mon. Weather Rev., V43, P163
[3]  
Burgers J M., 1939, T ROY NETH ACAD SCI, V17, P1
[4]   Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation [J].
Chen, Y ;
Wang, Q .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :745-757
[5]   Two new applications of the homogeneous balance method [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 265 (5-6) :353-357
[6]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[7]   A new algebraic method for finding the line soliton solutions and doubly periodic wave solution to a two-dimensional perturbed KdV equation [J].
Fan, EG .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :567-574
[8]   New transformations and new approach to find exact solutions to nonlinear equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD .
PHYSICS LETTERS A, 2002, 299 (5-6) :507-512
[9]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76