First eigenvalues of geometric operators under the Ricci flow

被引:81
作者
Cao, Xiaodong [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1090/S0002-9939-08-09533-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the first eigenvalues of -Delta+cR (c >= 1/4) are nondecreasing under the Ricci flow. We also prove the monotonicity under the normalized Ricci flow for the cases c = 1/4 and r <= 0.
引用
收藏
页码:4075 / 4078
页数:4
相关论文
共 13 条
[1]  
Cao XD, 2007, MATH ANN, V337, P435, DOI 10.1007/s00208-006-0043-5
[2]   Evolution of Yamabe constant under Ricci flow [J].
Chang, Shu-Cheng ;
Lu, Peng .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (02) :147-153
[3]  
Chow Bennett, 2007, Math Surveys and Monographs, V135
[4]  
HAMILTON RS, 1988, MATH GEN RELATIVITY, P237
[5]  
HAMILTON RS, 1995, SURVEYS DIFFERENTIAL, V2, P7
[6]   RICCI SOLITONS ON COMPACT 3-MANIFOLDS [J].
IVEY, T .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1993, 3 (04) :301-307
[7]  
KLEINER B, 2006, NOTES PERELMANS PAPE
[8]  
LI JF, MONOTONICITY FORMULA
[9]   Eigenvalues and energy functionals with monotonicity formulae under Ricci flow [J].
Li, Jun-Fang .
MATHEMATISCHE ANNALEN, 2007, 338 (04) :927-946
[10]   Eigenvalue monotonicity for the Ricci-Hamilton flow [J].
Ma, Li .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 29 (03) :287-292