Approximate Bayesian Inference for Doubly Robust Estimation

被引:21
|
作者
Graham, Daniel J. [1 ]
McCoy, Emma J. [2 ]
Stephens, David A. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Civil Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[3] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
来源
BAYESIAN ANALYSIS | 2016年 / 11卷 / 01期
关键词
approximate bayes; doubly robust; propensity score; treatment effect; PROPENSITY SCORE; MODELS;
D O I
10.1214/14-BA928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Doubly robust estimators are typically constructed by combining outcome regression and propensity score models to satisfy moment restrictions that ensure consistent estimation of causal quantities provided at least one of the component models is correctly specified. Standard Bayesian methods are difficult to apply because restricted moment models do not imply fully specified likelihood functions. This paper proposes a Bayesian bootstrap approach to derive approximate posterior predictive distributions that are doubly robust for estimation of causal quantities. Simulations show that the approach performs well under various sources of misspecification of the outcome regression or propensity score models. The estimator is applied in a case study of the effect of area deprivation on the incidence of child pedestrian casualties in British cities.
引用
收藏
页码:47 / 69
页数:23
相关论文
共 50 条
  • [31] Robust and Private Bayesian Inference
    Dimitrakakis, Christos
    Nelson, Blaine
    Mitrokotsa, Aikaterini
    Rubinstein, Benjamin I. P.
    ALGORITHMIC LEARNING THEORY (ALT 2014), 2014, 8776 : 291 - 305
  • [32] Doubly Robust Triple Cross-Fit Estimation for Causal Inference with Imaging Data
    Ke, Da
    Zhou, Xiaoxiao
    Yang, Qinglong
    Song, Xinyuan
    STATISTICS IN BIOSCIENCES, 2024,
  • [33] Causal inference accounting for unobserved confounding after outcome regression and doubly robust estimation
    Genback, Minna
    de Luna, Xavier
    BIOMETRICS, 2019, 75 (02) : 506 - 515
  • [34] Approximate Variational Bayesian Method for Robust Parameter Estimation of AR Models With Outliers
    Wan, Hongjie
    Ma, Xin
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 147 - 147
  • [36] Approximate Bayesian recursive estimation
    Karny, Miroslav
    INFORMATION SCIENCES, 2014, 285 : 100 - 111
  • [37] Robust Variational Bayesian Inference for Direction-of-Arrival Estimation With Sparse Array
    Liu, Ying
    Zhang, Zongyu
    Zhou, Chengwei
    Yan, Chenggang
    Shi, Zhiguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8591 - 8602
  • [38] Approximate Bayesian computation using indirect inference
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Faddy, Malcolm J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2011, 60 : 317 - 337
  • [39] On the Expressiveness of Approximate Inference in Bayesian Neural Networks
    Foong, Andrew Y. K.
    Burt, David R.
    Li, Yingzhen
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [40] A BAYESIAN-APPROACH TO APPROXIMATE CONDITIONAL INFERENCE
    SWEETING, TJ
    BIOMETRIKA, 1995, 82 (01) : 25 - 36