MULTI-TASK LEARNING IN AUTONOMOUS DRIVING SCENARIOS VIA ADAPTIVE FEATURE REFINEMENT NETWORKS

被引:0
作者
Zhai, Mingliang [1 ]
Xiang, Xuezhi [1 ]
Lv, Ning [1 ]
El Saddik, Abdulmotaleb [2 ]
机构
[1] Harbin Engn Univ, Sch Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
来源
2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING | 2020年
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Deep learning; optical flow; depth estimation; feature refinement; monocular video;
D O I
10.1109/icassp40776.2020.9054132
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Many deep learning applications benefit from multi-task learning with several related objectives. In autonomous driving scenarios, being able to accurately infer motion and spatial information is essential for scene understanding. In this paper, we combine an adaptive feature refinement module and a unified framework for joint learning of optical flow, depth and camera pose estimation in an unsupervised manner. The feature refinement module is embedded into motion estimation and depth prediction sub-networks, which can exploit more channel-wise relationships and contextual information for feature learning. Given a monocular video, our network firstly estimates depth and camera motion, and calculates rigid optical flow. Then, we design an auxiliary flow network for inferring non-rigid flow fields. In addition, a forward-backward consistency check is adopted for occlusion reasoning. Extensive experiments on KITTI dataset demonstrate that the proposed method achieves potential results comparing to recent deep learning networks.
引用
收藏
页码:2323 / 2327
页数:5
相关论文
共 50 条
  • [1] Statistically correlated multi-task learning for autonomous driving
    Abbas, Waseem
    Khan, Muhammad Fakhir
    Taj, Murtaza
    Mahmood, Arif
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19) : 12921 - 12938
  • [2] Optimal Configuration of Multi-Task Learning for Autonomous Driving
    Jun, Woomin
    Son, Minjun
    Yoo, Jisang
    Lee, Sungjin
    SENSORS, 2023, 23 (24)
  • [3] Statistically correlated multi-task learning for autonomous driving
    Waseem Abbas
    Muhammad Fakhir Khan
    Murtaza Taj
    Arif Mahmood
    Neural Computing and Applications, 2021, 33 : 12921 - 12938
  • [4] DRMNet: A Multi-Task Detection Model Based on Image Processing for Autonomous Driving Scenarios
    Zhao, Jiandong
    Wu, Di
    Yu, Zhixin
    Gao, Ziyou
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 15341 - 15355
  • [5] Geometry understanding from autonomous driving scenarios based on feature refinement
    Zhai, Mingliang
    Xiang, Xuezhi
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (08) : 3209 - 3220
  • [6] Geometry understanding from autonomous driving scenarios based on feature refinement
    Mingliang Zhai
    Xuezhi Xiang
    Neural Computing and Applications, 2021, 33 : 3209 - 3220
  • [7] Multi-Adaptive Optimization for multi-task learning with deep neural networks
    Hervella, alvaro S.
    Rouco, Jose
    Novo, Jorge
    Ortega, Marcos
    NEURAL NETWORKS, 2024, 170 : 254 - 265
  • [8] Adversarial Learning Guided Task Relatedness Refinement for Multi-Task Deep Learning
    Fang, Yuchun
    Cai, Sirui
    Cao, Yiting
    Li, Zhengchen
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6946 - 6957
  • [9] Real-Time Multi-task Network for Autonomous Driving
    Dat, Vu Thanh
    Bao, Ngo Viet Hoai
    Hung, Phan Duy
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT I, 2022, 1613 : 207 - 218
  • [10] Style-adaptive photo aesthetic rating via convolutional neural networks and multi-task learning
    Gao, Fei
    Li, Ziyun
    Yu, Jun
    Yu, Junze
    Huang, Qingming
    Tian, Qi
    NEUROCOMPUTING, 2020, 395 : 247 - 254