Convergence of lattice gauge theory for Maxwell's equations

被引:4
作者
Christiansen, Snorre H. [1 ]
Halvorsen, Tore Gunnar [1 ]
机构
[1] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway
关键词
Maxwell's equations; Lattice gauge theory; The Yee-scheme; FINITE-ELEMENTS; QUARKS;
D O I
10.1007/s10543-009-0242-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this article we prove convergence of Lattice Gauge Theory in the energy norm for electromagnetism, which corresponds to gauge group U(1). This is done by stability analysis and comparison with the classical Yee-scheme which is convergent.
引用
收藏
页码:645 / 667
页数:23
相关论文
共 50 条
[31]   From Maxwell's equations to the cable equation and beyond [J].
Lindsay, KA ;
Rosenberg, JR ;
Tucker, G .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2004, 85 (01) :71-116
[32]   A multi-energy-level lattice Boltzmann model for Maxwell's equations without sources [J].
Liu, Yanhong .
JOURNAL OF ELECTROSTATICS, 2011, 69 (06) :564-570
[33]   Symmetric Mass Generation in Lattice Gauge Theory [J].
Butt, Nouman ;
Catterall, Simon ;
Toga, Goksu Can .
SYMMETRY-BASEL, 2021, 13 (12)
[34]   Lattice Gauge Theory and (Quasi)-Conformal Technicolor [J].
Sinclair, D. K. ;
Kogut, J. B. .
STRONG COUPLING GAUGE THEORIES IN LHC ERA, 2011, :283-289
[35]   Going Beyond QCD in Lattice Gauge Theory [J].
Fleming, G. T. .
STRONG COUPLING GAUGE THEORIES IN LHC ERA, 2011, :267-274
[36]   Monte!Carlo Hamiltonian of lattice gauge theory [J].
Paradis, F. ;
Kroeger, H. ;
Luo, X. Q. ;
Moriarty, K. J. M. .
MODERN PHYSICS LETTERS A, 2007, 22 (7-10) :565-571
[37]   Cold atoms meet lattice gauge theory [J].
Aidelsburger, Monika ;
Barbiero, Luca ;
Bermudez, Alejandro ;
Chanda, Titas ;
Dauphin, Alexandre ;
Gonzalez-Cuadra, Daniel ;
Grzybowski, Przemyslaw R. ;
Hands, Simon ;
Jendrzejewski, Fred ;
Junemann, Johannes ;
Juzeliunas, Gediminas ;
Kasper, Valentin ;
Piga, Angelo ;
Ran, Shi-Ju ;
Rizzi, Matteo ;
Sierra, German ;
Tagliacozzo, Luca ;
Tirrito, Emanuele ;
Zache, Torsten, V ;
Zakrzewski, Jakub ;
Zohar, Erez ;
Lewenstein, Maciej .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2216)
[38]   Lattice gauge theory and the large N reduction [J].
Eguchi, Tohru .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (15)
[39]   Anomaly cancellation condition in lattice gauge theory [J].
Suzuki, H .
NUCLEAR PHYSICS B, 2000, 585 (1-2) :471-513
[40]   Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell's equations in dispersive media [J].
Lanteri, Stephane ;
Scheid, Claire .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) :432-459