Limit Points of Bernoulli Distribution Algebras Induced by Boolean Functions

被引:0
|
作者
Yashunsky, A. D. [1 ]
机构
[1] Keldysh Inst Appl Math, Moscow 125047, Russia
关键词
Bernoulli random variable; Boolean function; algebra; limit point;
D O I
10.1134/S199508021909021X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Bernoulli distribution algebras, i.e. sets of distributions that are closed under transformations achieved by substituting independent random variables for arguments of Boolean functions from a given system. We establish that, unless the transforming set contains only essentially unary functions, the set of algebra limit points is either empty, single-element or no less than countable.
引用
收藏
页码:1423 / 1432
页数:10
相关论文
共 50 条
  • [1] Limit Points of Bernoulli Distribution Algebras Induced by Boolean Functions
    A. D. Yashunsky
    Lobachevskii Journal of Mathematics, 2019, 40 : 1423 - 1432
  • [2] Boolean algebras and Lubell functions
    Johnston, Travis
    Lu, Linyuan
    Milans, Kevin G.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 136 : 174 - 183
  • [3] Algebras of Bernoulli Distributions with a Single Limit Point
    A. D. Yashunskii
    Moscow University Mathematics Bulletin, 2019, 74 : 135 - 140
  • [4] Algebras of Bernoulli Distributions with a Single Limit Point
    Yashunskii, A. D.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2019, 74 (04) : 135 - 140
  • [5] Automorphisms of Boolean algebras determined by fixed points
    D. E. Pal’chunov
    A. V. Trofimov
    Doklady Mathematics, 2012, 85 : 167 - 168
  • [6] Automorphisms of Boolean algebras determined by fixed points
    Pal'chunov, D. E.
    Trofimov, A. V.
    DOKLADY MATHEMATICS, 2012, 85 (02) : 167 - 168
  • [7] GRZEGORCZYK POINTS AND FILTERS IN BOOLEAN CONTACT ALGEBRAS
    Gruszczynski, Rafal
    Pietruszczak, Andrzej
    REVIEW OF SYMBOLIC LOGIC, 2023, 16 (02): : 509 - 528
  • [8] INVERSE LIMIT REPRESENTATION FOR COMPLETE BOOLEAN ALGEBRAS
    BEAZER, R
    GLASGOW MATHEMATICAL JOURNAL, 1972, 13 (SEP) : 164 - &
  • [9] On functions defined on free Boolean algebras
    Rosenberg, I
    Simovici, DA
    Jaroszewicz, S
    ISMVL 2002: 32ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2002, : 192 - 199
  • [10] Cardinal functions on ultraproducts of Boolean algebras
    Peterson, D
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (01) : 43 - 59