INJECTIVITY AND RANGE DESCRIPTION OF INTEGRAL MOMENT TRANSFORMS OVER m-TENSOR FIELDS IN Rn

被引:11
作者
Mishra, Rohit Kumar [1 ]
Sahoo, Suman Kumar [2 ]
机构
[1] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[2] Tata Inst Fundamental Res, Ctr Applicable Math, Bangalore, Karnataka, India
关键词
ray transform; integral moment transforms; range characterization; inverse problems; John equation; tensor analysis; X-RAY TRANSFORM; MICROLOCAL ANALYSIS; DOPPLER TRANSFORM; SUPPORT THEOREMS; VECTOR FIELD; INVERSION; BEAM; RECONSTRUCTION; TOMOGRAPHY;
D O I
10.1137/20M1347589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a new decomposition result for rank m symmetric tensor fields which generalizes the well-known solenoidal and potential decomposition of tensor fields. This decomposition is then used to describe the kernel and prove an injectivity result for the first (k +1) integral moment transforms of symmetric m-tensor fields in R-n. Additionally, we present a range characterization for the first (k + 1) integral moment transforms in terms of the John equation.
引用
收藏
页码:253 / 278
页数:26
相关论文
共 40 条
[1]   Support Theorems and an Injectivity Result for Integral Moments of a Symmetric m-Tensor Field [J].
Abhishek, Anuj ;
Mishra, Rohit Kumar .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (04) :1487-1512
[2]  
[Anonymous], 1994, AMS T
[3]   SUPPORT THEOREMS FOR RADON TRANSFORMS ON REAL ANALYTIC LINE COMPLEXES IN 3-SPACE [J].
BOMAN, J ;
QUINTO, ET .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :877-890
[4]   SUPPORT THEOREMS FOR REAL-ANALYTIC RADON TRANSFORMS [J].
BOMAN, J ;
QUINTO, ET .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) :943-948
[5]   Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve [J].
Denisjuk, A .
INVERSE PROBLEMS, 2006, 22 (02) :399-411
[6]  
Finch D, 2003, MATH SCI R, V47, P193
[7]   NONLOCAL INVERSION FORMULAS FOR THE X-RAY TRANSFORM [J].
GREENLEAF, A ;
UHLMANN, G .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) :205-240
[8]  
Greenleaf A, 1990, CONT MATH, V113, P121
[9]  
Haltmeier M., 2020, PREPRINT
[10]  
Helgason S., 1999, PROGR MATH, V5, DOI [10.1007/978-1-4757-1463-0, DOI 10.1007/978-1-4757-1463-0]