Strategies for improving radiation tolerance of Si space solar cells

被引:26
作者
Khan, A
Yamaguchi, M
Ohshita, Y
Dharmaraso, N
Araki, K
Khanh, VT
Itoh, H
Ohshima, T
Imaizumi, M
Matsuda, S
机构
[1] Toyota Technol Inst, Semicond Res Ctr, Tempaku Ku, Nagoya, Aichi 4688511, Japan
[2] Japan Atom Energy Res Inst, Gunma 3701292, Japan
[3] Natl Space Dev Agcy Japan, Tsukuba, Ibaraki 3058505, Japan
关键词
Si solar cells; radiation damage; dopant species; carrier removal effect; end of life performance; compensating centers;
D O I
10.1016/S0927-0248(02)00169-1
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present study explored first time the better radiation tolerance of gallium-doped silicon solar cells as compared to conventional boron-doped silicon solar cells after heavy fluence of I MeV electron irradiation. One of the approaches to improve the end of life of silicon solar cells is by increasing the effective base carrier concentrations. Analysis of the carrier removal rate RC in boron, gallium and aluminum-doped Si solar cells showed that carrier removal effects can be partially offset by using gallium as dopant instead of boron. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [31] Routes for realizing high-performing Si solar cells by using periodic structures
    Yadav, Pankaj
    Patel, Malkeshkumar
    Kim, Hyunyub
    Cho, Yunae
    Kim, Hyunki
    Kim, Joondong
    Yi, Junsin
    Kim, Dong-Wook
    MATERIALS RESEARCH BULLETIN, 2017, 94 : 92 - 99
  • [32] Numerical simulation of the type inversion in n plus -p-p plus Si solar cells, used for space applications, under 1 MeV electron irradiation
    Hamache, A.
    Sengouga, N.
    Meftah, Af.
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES14 - EUMISD), 2014, 50 : 139 - 146
  • [33] Nanopinhole Passivating Contact Si Solar Cells Fabricated with Metal-Assisted Chemical Etching
    Lima Salles, Caroline
    Nemeth, William
    Guthrey, Harvey L.
    Jiang, Chun-Sheng
    Page, Matthew R.
    Agarwal, Sumit
    Stradins, Paul
    ADVANCED ENERGY MATERIALS, 2023, 13 (11)
  • [34] Periodically patterned Si pyramids for realizing high efficient solar cells by wet etching process
    Kumar, Melvin David
    Kim, Hyunyub
    Kim, Joondong
    SOLAR ENERGY, 2015, 117 : 180 - 186
  • [35] Improved Efficiency of Structured Si Solar Cells via Graphene Hybrid Materials as Top Electrodes
    Tu, Wei-Chen
    Fang, Chang-Wen
    Lin, Ming-Yi
    Uen, Wu-Yi
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2017, 12 (08) : 853 - 856
  • [36] Predicting Loss Analysis from Luminescence Images in Si Solar Cells with Convolutional Neural Networks
    Huang, Ziqiong
    Ho, Jian Wei
    Choi, Kwan Bum
    Danner, Aaron
    Chan, Keng Siew
    SOLAR RRL, 2023, 7 (23)
  • [37] Nanopyramid Formation by Ag Metal-Assisted Chemical Etching for Nanotextured Si Solar Cells
    Parida, Bhaskar
    Choi, Jaeho
    Palei, Srikanta
    Kim, Keunjoo
    Kwak, Seung Jong
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2015, 16 (04) : 206 - 211
  • [38] Mechanism for the anomalous degradation of Si solar cells induced by high-energy proton irradiation
    Imaizumi, M
    Yamaguchi, M
    Taylor, SJ
    Matsuda, S
    Kawasaki, O
    Hisamatsu, T
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 50 (1-4) : 339 - 344
  • [39] Evaluation of the resistance of halide perovskite solar cells to high energy proton irradiation for space applications
    Herrera Martinez, Walter O.
    Correa Guerrero, Natalia B.
    Gomez Andrade, Victoria A.
    Alurralde, Martin
    Dolores Perez, M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
  • [40] Improvement of ultralow reflectance Si solar cells by machine-learning-assisted optimization for diffusion process
    Imamura, Kentaro
    Kunieda, Shogo
    MATERIALS TODAY COMMUNICATIONS, 2022, 31