Spin-orbit coupling in elemental two-dimensional materials

被引:55
作者
Kurpas, Marcin [1 ]
Faria, Paulo E., Jr. [2 ]
Gmitra, Martin [3 ]
Fabian, Jaroslav [2 ]
机构
[1] Univ Silesia Katowice, Inst Phys, PL-41500 Chorzow, Poland
[2] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[3] PJ Safarik Univ Kosice, Inst Phys, Pk Angelinum 9, Kosice 04001, Slovakia
关键词
CONDUCTION ELECTRONS; EPITAXIAL-GROWTH; RELAXATION; PHOSPHORUS; SILICENE; METALS; LAYER;
D O I
10.1103/PhysRevB.100.125422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fundamental spin-orbit coupling and spin mixing in graphene and rippled honeycomb lattice materials silicene, germanene, stanene, blue phosphorene, arsenene, antimonene, and bismuthene is investigated from first principles. The intrinsic spin-orbit coupling in graphene is revisited using multiband k . p theory, showing the presence of nonzero spin mixing in graphene despite the mirror symmetry. However, the spin mixing itself does not lead to the the Elliott-Yafet spin relaxation mechanism, unless the mirror symmetry is broken by external factors. For other aforementioned elemental materials we present the spin-orbit splittings at relevant symmetry points, as well as the spin admixture b(2) as a function of energy close to the band extrema or Fermi levels. We find that spin-orbit coupling scales as the square of the atomic number Z, as expected for valence electrons in atoms. For isolated bands, it is found that b(2) follows a scaling law close to b(2) similar to Z(4). The spin-mixing parameter also exhibits giant anisotropy which, to a large extent, can be controlled by tuning the Fermi level. Our results for b(2) can be directly transferred to spin relaxation time due to the Elliott-Yafet mechanism, and therefore provide an estimate of the upper limit for spin lifetimes in materials with space inversion center.
引用
收藏
页数:9
相关论文
共 57 条
[1]  
[Anonymous], 2006, PLANEWAVES PSEUDOPOT, DOI DOI 10.1007/978-1-4757-2312-0
[2]  
[Anonymous], 1963, Solid State Physics
[3]  
Avsar A, 2017, NAT PHYS, V13, P888, DOI [10.1038/nphys4141, 10.1038/NPHYS4141]
[4]  
Blaha P., 2001, An augmented plane wave+ local orbitals program for calculating crystal properties, P60
[5]   A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors [J].
Boross, Peter ;
Dora, Balazs ;
Kiss, Annamaria ;
Simon, Ferenc .
SCIENTIFIC REPORTS, 2013, 3
[6]   Isolation and characterization of few-layer black phosphorus [J].
Castellanos-Gomez, Andres ;
Vicarelli, Leonardo ;
Prada, Elsa ;
Island, Joshua O. ;
Narasimha-Acharya, K. L. ;
Blanter, Sofya I. ;
Groenendijk, Dirk J. ;
Buscema, Michele ;
Steele, Gary A. ;
Alvarez, J. V. ;
Zandbergen, Henny W. ;
Palacios, J. J. ;
van der Zant, Herre S. J. .
2D MATERIALS, 2014, 1 (02)
[7]   Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons [J].
Castro, Eduardo V. ;
Ochoa, H. ;
Katsnelson, M. I. ;
Gorbachev, R. V. ;
Elias, D. C. ;
Novoselov, K. S. ;
Geim, A. K. ;
Guinea, F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (26)
[8]   Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene [J].
Davila, M. E. ;
Xian, L. ;
Cahangirov, S. ;
Rubio, A. ;
Le Lay, G. .
NEW JOURNAL OF PHYSICS, 2014, 16
[9]   Continuous Germanene Layer on A(111) [J].
Derivaz, Mickael ;
Dentel, Didier ;
Stephan, Regis ;
Hanf, Marie-Christine ;
Mehdaoui, Ahmed ;
Sonnet, Philippe ;
Pirri, Carmelo .
NANO LETTERS, 2015, 15 (04) :2510-2516
[10]   THEORY OF THE EFFECT OF SPIN-ORBIT COUPLING ON MAGNETIC RESONANCE IN SOME SEMICONDUCTORS [J].
ELLIOTT, RJ .
PHYSICAL REVIEW, 1954, 96 (02) :266-279