Weak orders admitting a perpendicular linear order

被引:0
作者
Pouzet, Maurice
Zaguia, Imed
机构
[1] Univ Lyon 1, LaPCS, F-69622 Villeurbanne, France
[2] Sultan Qaboos Univ, Dept Math & Stat, Muscat, Oman
关键词
ordered set; weak order; autonomous set; retractile set; order-preserving map; endomorphism; maximal clone; perpendicular orders;
D O I
10.1016/j.disc.2006.05.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two orders on the same set are perpendicular if the constant maps and the identity map are the only maps preserving both orders. We characterize the finite weak orders admitting a perpendicular linear order. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 11 条
[1]  
DEMETROVICS J, 1990, PROCEEDINGS OF THE TWENTIETH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, P248, DOI 10.1109/ISMVL.1990.122629
[2]  
Erdos P., 1935, Compositio mathematica, V2, P463
[3]  
Fishburn PC., 1985, INTERVAL ORDERS INTE, pxi+215
[4]  
JOURDAN GV, 1996, COMMUNICATION
[5]  
Kelly D., 1985, NATO ASI SER, V147, P3
[6]  
Langer F., 1984, J PURE APPL ALGEBRA, V2, P129
[7]   THE NUMBER OF ORTHOGONAL PERMUTATIONS [J].
NOZAKI, A ;
MIYAKAWA, M ;
POGOSYAN, G ;
ROSENBERG, IG .
EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (01) :71-85
[8]  
Palfy P.P., 1984, ALGEBR UNIV, V18, P162
[9]   PERPENDICULAR ORDERS [J].
RIVAL, I ;
ZAGUIA, N .
DISCRETE MATHEMATICS, 1995, 137 (1-3) :303-313
[10]   Prime two-dimensional orders and perpendicular total orders [J].
Zaguia, I .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (05) :639-649