Weyl group multiple Dirichlet series constructed from quadratic characters

被引:20
|
作者
Chinta, Gautam [1 ]
Gunnells, Paul E.
机构
[1] CUNY City Coll, Dept Math, New York, NY 10031 USA
[2] Univ Gottingen, Inst Math, D-37073 Gottingen, Germany
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
D O I
10.1007/s00222-006-0014-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct multiple Dirichlet series in several complex variables whose coefficients involve quadratic residue symbols. The series are shown to have an analytic continuation and satisfy a certain group of functional equations. These are the first examples of an infinite collection of unstable Weyl group multiple Dirichlet series in greater than two variables having the properties predicted in [2].
引用
收藏
页码:327 / 353
页数:27
相关论文
共 50 条
  • [1] Weyl group multiple Dirichlet series constructed from quadratic characters
    Gautam Chinta
    Paul E. Gunnells
    Inventiones mathematicae, 2007, 167 : 327 - 353
  • [2] On the p-parts of quadratic Weyl group multiple Dirichlet series
    Chinta, Gautam
    Friedberg, Solomon
    Gunnells, Paul E.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 623 : 1 - 23
  • [3] CONSTRUCTING WEYL GROUP MULTIPLE DIRICHLET SERIES
    Chinta, Gautam
    Gunnells, Paul E.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) : 189 - 215
  • [4] Weyl group multiple Dirichlet series I
    Brubaker, Benjamin
    Bump, Daniel
    Chinta, Gautam
    Friedberg, Solomon
    Hoffstein, Jeffrey
    MULTIPLE DIRICHLET SERIES, AUTOMORPHIC FORMS, AND ANALYTIC NUMBER THEORY, 2006, 75 : 91 - +
  • [5] WEYL GROUP MULTIPLE DIRICHLET SERIES OF TYPE C
    Beineke, Jennifer
    Brubaker, Benjamin
    Frechette, Sharon
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (01) : 11 - 46
  • [6] Weyl group multiple Dirichlet series, Eisenstein series and crystal bases
    Brubaker, Ben
    Bump, Daniel
    Friedberg, Solomon
    ANNALS OF MATHEMATICS, 2011, 173 (02) : 1081 - 1120
  • [7] On the p-parts of Weyl group multiple Dirichlet series
    Friedlander, Holley
    ACTA ARITHMETICA, 2017, 179 (04) : 301 - 317
  • [8] Weyl group multiple Dirichlet series II: The stable case
    Brubaker, Ben
    Bump, Daniel
    Friedberg, Solomon
    INVENTIONES MATHEMATICAE, 2006, 165 (02) : 325 - 355
  • [9] Weyl group multiple Dirichlet series II: The stable case
    Ben Brubaker
    Daniel Bump
    Solomon Friedberg
    Inventiones mathematicae, 2006, 165 : 325 - 355
  • [10] On the crystal graph description of the stable Weyl group multiple Dirichlet series
    Cai, Yuanqing
    JOURNAL OF NUMBER THEORY, 2020, 215 : 186 - 215