pARMS: A package for solving general sparse linear systems on parallel computers

被引:0
作者
Saad, Y [1 ]
Sosonkina, M
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Duluth, MN 55812 USA
来源
PARALLEL PROCESSING APPLIED MATHEMATICS | 2002年 / 2328卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an overview of pARMS, a package for solving sparse linear systems on parallel platforms. Preconditioners constitute the most important ingredient in the solution of linear systems arising from realistic scientific and engineering applications. The most common parallel preconditioners used for sparse linear systems adapt domain decomposition concepts to the more general framework of "distributed sparse linear systems". The parallel Algebraic Recursive Multilevel Solver (pAMS) is a recently developed package which integrates together variants from both Schwarz procedures and Schur complement-type techniques. This paper discusses a few of the main ideas and design issues of the package. A few details on the implementation of pARMS are provided.
引用
收藏
页码:446 / 457
页数:12
相关论文
共 16 条
[1]  
Balay S., 1999, Tech. Report ANL-95/11-Revision2.0.24
[2]   PARALLEL CONJUGATE GRADIENT-LIKE ALGORITHMS FOR SOLVING SPARSE NONSYMMETRIC LINEAR-SYSTEMS ON A VECTOR MULTIPROCESSOR [J].
DIBROZOLO, GR ;
ROBERT, Y .
PARALLEL COMPUTING, 1989, 11 (02) :223-239
[3]  
EIJKHOUT V, 1997, 9724 UCLA
[4]  
Gropp W. D., 1994, Using MPI-Portable Parallel Programming with the Message -Parsing Interface
[5]  
HUTCHINSON SA, 1995, SAND951559 SAND NAT
[6]  
HYSOM D, 2000, SCALABLE PARALLEL AL
[7]  
JONES MT, 1995, ANL9548
[8]  
LI Z, 2001, UMSI2001100 U MINN M
[9]   A FLEXIBLE INNER-OUTER PRECONDITIONED GMRES ALGORITHM [J].
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :461-469
[10]  
SAAD Y, 1994, 94008 ARM HIGH PERF