Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference

被引:65
作者
Aubin-Frankowski, Pierre-Cyril [1 ]
Vert, Jean-Philippe [1 ,2 ]
机构
[1] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-75006 Paris, France
[2] Google Res, Brain Team, F-75009 Paris, France
关键词
NETWORK INFERENCE; EXPRESSION; HETEROGENEITY; CIRCUITRY; DYNAMICS;
D O I
10.1093/bioinformatics/btaa576
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. Results: In this work, we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual cells, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.
引用
收藏
页码:4774 / 4780
页数:7
相关论文
共 37 条
[31]   A general and flexible method for signal extraction from single-cell RNA-seq data [J].
Risso, Davide ;
Perraudeau, Fanny ;
Gribkova, Svetlana ;
Dudoit, Sandrine ;
Vert, Jean-Philippe .
NATURE COMMUNICATIONS, 2018, 9
[32]   Computational and analytical challenges in single-cell transcriptomics [J].
Stegle, Oliver ;
Teichmann, Sarah A. ;
Marioni, John C. .
NATURE REVIEWS GENETICS, 2015, 16 (03) :133-145
[33]   Conservation of trans-acting circuitry during mammalian regulatory evolution [J].
Stergachis, Andrew B. ;
Neph, Shane ;
Sandstrom, Richard ;
Haugen, Eric ;
Reynolds, Alex P. ;
Zhang, Miaohua ;
Byron, Rachel ;
Canfield, Theresa ;
Stelhing-Sun, Sandra ;
Lee, Kristen ;
Thurman, Robert E. ;
Vong, Shinny ;
Bates, Daniel ;
Neri, Fidencio ;
Diegel, Morgan ;
Giste, Erika ;
Dunn, Douglas ;
Vierstra, Jeff ;
Hansen, R. Scott ;
Johnson, Audra K. ;
Sabo, Peter J. ;
Wilken, Matthew S. ;
Reh, Thomas A. ;
Treuting, Piper M. ;
Kaul, Rajinder ;
Groudine, Mark ;
Bender, M. A. ;
Borenstein, Elhanan ;
Stamatoyannopoulos, John A. .
NATURE, 2014, 515 (7527) :365-+
[34]   Adult mouse cortical cell taxonomy revealed by single cell transcriptomics [J].
Tasic, Bosiljka ;
Menon, Vilas ;
Thuc Nghi Nguyen ;
Kim, Tae Kyung ;
Jarsky, Tim ;
Yao, Zizhen ;
Levi, Boaz ;
Gray, Lucas T. ;
Sorensen, Staci A. ;
Dolbeare, Tim ;
Bertagnolli, Darren ;
Goldy, Jeff ;
Shapovalova, Nadiya ;
Parry, Sheana ;
Lee, Changkyu ;
Smith, Kimberly ;
Bernard, Amy ;
Madisen, Linda ;
Sunkin, Susan M. ;
Hawrylycz, Michael ;
Koch, Christof ;
Zeng, Hongkui .
NATURE NEUROSCIENCE, 2016, 19 (02) :335-+
[35]   Defining cell types and states with single-cell genomics [J].
Trapnell, Cole .
GENOME RESEARCH, 2015, 25 (10) :1491-1498
[36]   Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq [J].
Treutlein, Barbara ;
Lee, Qian Yi ;
Camp, J. Gray ;
Mall, Moritz ;
Koh, Winston ;
Shariati, Seyed Ali Mohammad ;
Sim, Sopheak ;
Neff, Norma F. ;
Skotheim, Jan M. ;
Wernig, Marius ;
Quake, Stephen R. .
NATURE, 2016, 534 (7607) :391-+
[37]   Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq [J].
Zeisel, Amit ;
Munoz-Manchado, Ana B. ;
Codeluppi, Simone ;
Lonnerberg, Peter ;
La Manno, Gioele ;
Jureus, Anna ;
Marques, Sueli ;
Munguba, Hermany ;
He, Liqun ;
Betsholtz, Christer ;
Rolny, Charlotte ;
Castelo-Branco, Goncalo ;
Hjerling-Leffler, Jens ;
Linnarsson, Sten .
SCIENCE, 2015, 347 (6226) :1138-1142