Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference

被引:64
作者
Aubin-Frankowski, Pierre-Cyril [1 ]
Vert, Jean-Philippe [1 ,2 ]
机构
[1] PSL Res Univ, CBIO Ctr Computat Biol, MINES ParisTech, F-75006 Paris, France
[2] Google Res, Brain Team, F-75009 Paris, France
关键词
NETWORK INFERENCE; EXPRESSION; HETEROGENEITY; CIRCUITRY; DYNAMICS;
D O I
10.1093/bioinformatics/btaa576
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology. Results: In this work, we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual cells, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.
引用
收藏
页码:4774 / 4780
页数:7
相关论文
共 37 条
[1]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[2]   Structured Sparsity through Convex Optimization [J].
Bach, Francis ;
Jenatton, Rodolphe ;
Mairal, Julien ;
Obozinski, Guillaume .
STATISTICAL SCIENCE, 2012, 27 (04) :450-468
[3]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17
[4]   Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis [J].
Bastidas-Ponce, Aimee ;
Tritschler, Sophie ;
Dony, Leander ;
Scheibner, Katharina ;
Tarquis-Medina, Marta ;
Salinno, Ciro ;
Schirge, Silvia ;
Burtscher, Ingo ;
Boettcher, Anika ;
Theis, Fabian J. ;
Lickert, Heiko ;
Bakhti, Mostafa .
DEVELOPMENT, 2019, 146 (12)
[5]  
Bergen V, 2019, GEN RNA VELOCITY TRA
[6]   Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network [J].
Bessonnard, Sylvain ;
De Mot, Laurane ;
Gonze, Didier ;
Barriol, Manon ;
Dennis, Cynthia ;
Goldbeter, Albert ;
Dupont, Genevieve ;
Chazaud, Claire .
DEVELOPMENT, 2014, 141 (19) :3637-3648
[7]   Computational methods for trajectory inference from single-cell transcriptomics [J].
Cannoodt, Robrecht ;
Saelens, Wouter ;
Saeys, Yvan .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (11) :2496-2506
[8]   Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures [J].
Chan, Thalia E. ;
Stumpf, Michael P. H. ;
Babtie, Ann C. .
CELL SYSTEMS, 2017, 5 (03) :251-+
[9]   Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm [J].
Chu, Li-Fang ;
Leng, Ning ;
Zhang, Jue ;
Hou, Zhonggang ;
Mamott, Daniel ;
Vereide, David T. ;
Choi, Jeea ;
Kendziorski, Christina ;
Stewart, Ron ;
Thomson, James A. .
GENOME BIOLOGY, 2016, 17
[10]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196