Aircraft are frequently exposed to cold environments and ice accumulation on aircraft surface may lead to catastrophic accidents. An effective solution of ice protection is a critical requirement in the aerospace industry. For the research and development of icephobic coatings, the current coating design target mainly focuses on lowering the ice adhesion strength between the ice and the surface. However, as a passive ice protection approach, the use of icephobic coating often has to be combined with an active ice protection solution (e.g. electrothermal heating, hot air bleeding, and vibration, etc.), especially for the in-flight application where the reliability of ice protection must be ensured. Therefore, ice adhesion strength is no longer the sole criterion to evaluate the icephobic performance of a coating or a surface. It is a need to establish a more practical strategy for the design of icephobic coatings and surface. In this work, an energy saving strategy is proposed to assess the deicing performance of the icephobic coating and surface when active heating is involved. The energy consumed for the de-icing operation assisted by the ice gravity is used as the key criterion for the overall performance of icephobic coating and surface. Successful validation has been achieved for evaluating the de-icing performance of selected coatings and surfaces, which demonstrates an alternative strategy for the design and practical application of icephobic coatings and surfaces in ice protection.