Interface Aspects in All-Solid-State Li-Based Batteries Reviewed

被引:119
作者
Chen, Chunguang [1 ]
Jiang, Ming [1 ,2 ]
Zhou, Tao [3 ]
Raijmakers, Luc [1 ]
Vezhlev, Egor [4 ]
Wu, Baolin [1 ,5 ]
Schuelli, Tobias U. [6 ]
Danilov, Dmitri L. [1 ,2 ]
Wei, Yujie [7 ,8 ]
Eichel, Ruediger-A. [1 ,5 ]
Notten, Peter H. L. [1 ,2 ,9 ]
机构
[1] Forschungszentrum Julich IEK 9, D-52425 Julich, Germany
[2] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Argonne Natl Lab, Nanosci & Technol Div, Lemont, IL 60439 USA
[4] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS 4, D-85748 Garching, Germany
[5] Rhein Westfal TH Aachen, Inst Phys Chem, D-52074 Aachen, Germany
[6] ID01 ESRF, CS 40220, F-38043 Grenoble 9, France
[7] Chinese Acad Sci, Inst Mech, LNM, Beijing 100190, Peoples R China
[8] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[9] Univ Technol Sydney, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
关键词
all‐ solid‐ state batteries; depth profiling; interfaces; interfacial resolution; lithium detection; LITHIUM-ION BATTERY; INDUCED BREAKDOWN SPECTROSCOPY; OPTICAL-EMISSION SPECTROSCOPY; RAY PHOTOELECTRON-SPECTROSCOPY; PLASMA-MASS SPECTROMETRY; DEPTH PROFILE ANALYSIS; IN-SITU OBSERVATION; THIN-FILM; ELECTROLYTE INTERPHASE; ELECTROCHEMICAL PROPERTIES;
D O I
10.1002/aenm.202003939
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Extensive efforts have been made to improve the Li-ionic conductivity of solid electrolytes (SE) for developing promising all-solid-state Li-based batteries (ASSB). Recent studies suggest that minimizing the existing interface problems is even more important than maximizing the conductivity of SE. Interfaces are essential in ASSB, and their properties significantly influence the battery performance. Interface problems, arising from both physical and (electro)chemical material properties, can significantly inhibit the transport of electrons and Li-ions in ASSB. Consequently, interface problems may result in interlayer formation, high impedances, immobilization of moveable Li-ions, loss of active host sites available to accommodate Li-ions, and Li-dendrite formation, all causing significant storage capacity losses and ultimately battery failures. The characteristic differences of interfaces between liquid- and solid-type Li-based batteries are presented here. Interface types, interlayer origin, physical and chemical structures, properties, time evolution, complex interrelations between various factors, and promising interfacial tailoring approaches are reviewed. Furthermore, recent advances in the interface-sensitive or depth-resolved analytical tools that can provide mechanistic insights into the interlayer formation and strategies to tailor the interlayer formation, composition, and properties are discussed.
引用
收藏
页数:55
相关论文
共 351 条
[1]   Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes [J].
Ahmad, Zeeshan ;
Xie, Tian ;
Maheshwari, Chinmay ;
Grossman, Jeffrey C. ;
Viswanathan, Venkatasubramanian .
ACS CENTRAL SCIENCE, 2018, 4 (08) :996-1006
[2]   In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage [J].
Aizawa, Yuka ;
Yamamoto, Kazuo ;
Sato, Takeshi ;
Murata, Hidekazu ;
Yoshida, Ryuji ;
Fisher, Craig A. J. ;
Kato, Takehisa ;
Iriyama, Yasutoshi ;
Hirayama, Tsukasa .
ULTRAMICROSCOPY, 2017, 178 :20-26
[3]   Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials [J].
Aktas, Sevda ;
Ozkendir, Osman Murat ;
Eker, Yasin Ramazan ;
Ates, Sule ;
Atav, Ulfet ;
Celik, Gultekin ;
Klysubun, Wantana .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 :279-285
[4]   Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery [J].
Alexander, George V. ;
Indu, M. S. ;
Kamakshy, Selvajyothi ;
Murugan, Ramaswamy .
ELECTROCHIMICA ACTA, 2020, 332
[5]   Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification [J].
Alexander, George V. ;
Rosero-Navarro, Nataly Carolina ;
Miura, Akira ;
Tadanaga, Kiyoharu ;
Murugan, Ramaswamy .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (42) :21018-21028
[6]   Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors [J].
Alexander, George Vadakkethalakel ;
Patra, Srabani ;
Valiyaveetil, Sona ;
Raj, Sobhan ;
Sugumar, Manoj Krishna ;
Din, Mir Mehraj Ud ;
Murugan, Ramaswamy .
JOURNAL OF POWER SOURCES, 2018, 396 :764-773
[7]   Accurate measurement of electric potentials in biased GaAs compound semiconductors by phase-shifting electron holography [J].
Anada, Satoshi ;
Yamamoto, Kazuo ;
Sasaki, Hirokazu ;
Shibata, Naoya ;
Matsumoto, Miko ;
Hori, Yujin ;
Kinugawa, Kouhei ;
Imamura, Akihiro ;
Hirayama, Tsukasa .
MICROSCOPY, 2019, 68 (02) :159-166
[8]  
Ankner J.F., 2013, CURR PROTOC PROTEIN, V72
[9]   IONIC-CONDUCTIVITY AND SINTERABILITY OF LITHIUM TITANIUM PHOSPHATE SYSTEM [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
SOLID STATE IONICS, 1990, 40-1 :38-42
[10]   Depth profile analysis of nanometric layers by laser-induced breakdown spectroscopy [J].
Ardakani, H. Afkhami ;
Tavassoli, S. H. .
JOURNAL OF APPLIED SPECTROSCOPY, 2013, 80 (01) :153-157