An Analytical Technique Implemented in the Fractional Clannish Random Walker's Parabolic Equation with Nonlinear Physical Phenomena

被引:15
作者
Alam, Md. Nur [1 ]
Talib, Imran [2 ]
Bazighifan, Omar [3 ]
Chalishajar, Dimplekumar N. [4 ]
Almarri, Barakah [5 ]
机构
[1] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh
[2] Virtual Univ Pakistan, Fac Sci & Technol, Dept Math & Stat, Lahore 54000, Pakistan
[3] Hadhramout Univ, Dept Math, Fac Sci, Hadhramout 50512, Yemen
[4] Virginia Mil Inst, Dept Appl Math, 435 Mallory Hall,Letcher Av, Lexington, VA 24450 USA
[5] Princess Nourah bint Abdulrahman Univ, Dept Math Sci, Fac Sci, Riyadh 11564, Saudi Arabia
关键词
FCRWP; adapted (G '/G)-expansion scheme; exact solutions; fractional calculus; nonlinear dynamics; ZAKHAROV-KUZNETSOV EQUATION; DIFFERENTIAL-EQUATIONS; OPTICAL SOLITONS; WAVE SOLUTIONS;
D O I
10.3390/math9080801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the adapted (G '/G)-expansion scheme is executed to obtain exact solutions to the fractional Clannish Random Walker's Parabolic (FCRWP) equation. Some innovative results of the FCRWP equation are gained via the scheme. A diverse variety of exact outcomes are obtained. The proposed procedure could also be used to acquire exact solutions for other nonlinear fractional mathematical models (NLFMMs).
引用
收藏
页数:10
相关论文
共 37 条
[1]   A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations [J].
Ahmad, Hijaz ;
Khan, Tufail A. ;
Ahmad, Imtiaz ;
Stanimirovic, Predrag S. ;
Chu, Yu-Ming .
RESULTS IN PHYSICS, 2020, 19
[2]   New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations [J].
Ahmad, Hijaz ;
Akgul, Ali ;
Khan, Tufail A. ;
Stanimirovic, Predrag S. ;
Chu, Yu-Ming .
COMPLEXITY, 2020, 2020
[3]   Stable and functional solutions of the Klein-Fock-Gordon equation with nonlinear physical phenomena [J].
Alam, Md Nur ;
Bonyah, Ebenezer ;
Fayz-Al-Asad, Md ;
Osman, M. S. ;
Abualnaja, Kholod M. .
PHYSICA SCRIPTA, 2021, 96 (05)
[4]   Closed-form wave structures of the space-time fractional Hirota-Satsuma coupled KdV equation with nonlinear physical phenomena [J].
Alam, Md Nur ;
Seadawy, Aly R. ;
Baleanu, Dumitru .
OPEN PHYSICS, 2020, 18 (01) :555-565
[5]   The new solitary wave structures for the (2 [J].
Alam, Md Nur ;
Tunc, Cemil .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) :2221-2232
[6]   New soliton solutions to the nonlinear complex fractional Schrodinger equation and the conformable time-fractional Klein-Gordon equation with quadratic and cubic nonlinearity [J].
Alam, Md Nur ;
Li, Xin .
PHYSICA SCRIPTA, 2020, 95 (04)
[7]   New structures for closed-form wave solutions for the dynamical equations model related to the ion sound and Langmuir waves [J].
Alam, Nur ;
Osman, M. S. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (03)
[8]  
Aminikhah H., 2016, Sci. Iran, V23, P1048, DOI [DOI 10.24200/sci.2016.3873, 10.24200/sci.2016.3873, DOI 10.24200/SCI.2016.3873]
[9]   Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis [J].
Aslan, Ebru Cavlak .
OPTIK, 2019, 196
[10]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769