Non-vanishing elements of finite groups

被引:18
作者
Dolfi, Silvio [2 ]
Navarro, Gabriel [3 ]
Pacifici, Emanuele [1 ]
Sanus, Lucia [3 ]
Tiep, Pham Huu [4 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[3] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Finite groups; Characters; Zeros of characters; CHARACTERS;
D O I
10.1016/j.jalgebra.2009.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every chi in Irr(G), we have chi (x) not equal 0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:540 / 545
页数:6
相关论文
共 15 条
[1]  
Carter R. W., 1985, Pure and Applied Mathematics (New York)
[2]  
Digne F., 1991, London Math. Soc. Student Texts, V21
[3]   ON FINITE RATIONAL GROUPS AND RELATED TOPICS [J].
FEIT, W ;
SEITZ, GM .
ILLINOIS JOURNAL OF MATHEMATICS, 1989, 33 (01) :103-131
[4]  
GLUCK D, 1983, CAN J MATH, V35, P59, DOI 10.4153/CJM-1983-005-2
[5]  
Gorenstein D., 1994, Math. Surveys Monogr., V3
[6]   Defect zero p-blocks for finite simple groups [J].
Granville, A ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :331-347
[7]  
Huppert B., 1967, Endliche Gruppen I
[8]  
Isaacs I. M., 2006, CHARACTER THEORY FIN
[9]   Finite group elements where no irreducible character vanishes [J].
Isaacs, IM ;
Navarro, G ;
Wolf, TR .
JOURNAL OF ALGEBRA, 1999, 222 (02) :413-423
[10]  
LUSZTIG G, 1984, ANN MATH STUD, pR3