Nanotechnology and biomaterials for orthopedic medical applications

被引:87
作者
Balasundaram, Ganesan [1 ]
Webster, Thomas J. [1 ]
机构
[1] Brown Univ, Div Engn, Providence, RI 02912 USA
关键词
bone regeneration; materials; nanophase; nanotechnology; osteoblasts; topography;
D O I
10.2217/17435889.1.2.169
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Future prospects for nanotechnology and biomaterials in medical applications appear to be excellent. In orthopedic applications, there is a significant need and demand for the development of a bone substitute that is bioactive and exhibits material properties (mechanical and surface) comparable with those of natural, healthy bone. Particularly, in bone tissue engineering, nanometer-sized ceramics, polymers, metals and composites have been receiving much attention recently. This is a result of current conventional materials (or those materials with constituent dimensions >1 mu m) that have not invoked suitable cellular responses to promote adequate osteointegration to enable these devices to be successful for long periods. By contrast, owing to their ability to mimic the dimensions of constituent components of natural bone (e.g., proteins and hydroxyapatite), nanophase materials may be an exciting successful alternative orthopedic implant material. In this article, the ability of novel nanomaterials that promote osteointegration is discussed. Potential pitfalls or undesirable side effects associated with the use of nanomaterials in orthopedic applications are also reviewed.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 43 条
[1]   Effect of grooved titanium substratum on human osteoblastic cell growth [J].
Anselme, K ;
Bigerelle, M ;
Noël, B ;
Iost, A ;
Hardouin, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 60 (04) :529-540
[2]   Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD [J].
Balasundaram, G ;
Sato, M ;
Webster, TJ .
BIOMATERIALS, 2006, 27 (14) :2798-2805
[3]   Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J].
Barber, TA ;
Golledge, SL ;
Castner, DG ;
Healy, KE .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 64A (01) :38-47
[4]  
Boyan BD, 2001, J BIOMED MATER RES, V55, P350, DOI 10.1002/1097-4636(20010605)55:3<350::AID-JBM1023>3.0.CO
[5]  
2-M
[6]   Mechanisms involved in osteoblast response to implant surface morphology [J].
Boyan, BD ;
Lohmann, CH ;
Dean, DD ;
Sylvia, VL ;
Cochran, DL ;
Schwartz, Z .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2001, 31 :357-371
[7]   Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? [J].
Cai, Kaiyong ;
Bossert, Jorg ;
Jandt, Klaus D. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 49 (02) :136-144
[8]   Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: Characterization and cell behaviour aspects [J].
Cai, KY ;
Rechtenbach, A ;
Hao, JY ;
Bossert, J ;
Jandt, KD .
BIOMATERIALS, 2005, 26 (30) :5960-5971
[9]   Bone morphogenetic proteins [J].
Chen, D ;
Zhao, M ;
Mundy, GR .
GROWTH FACTORS, 2004, 22 (04) :233-241
[10]   Nantotechniques and approaches in biotechnology [J].
Curtis, A ;
Wilkinson, C .
TRENDS IN BIOTECHNOLOGY, 2001, 19 (03) :97-101