Some regularity results for Lorentz-Finsler spaces

被引:17
作者
Minguzzi, E. [1 ]
Suhr, S. [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Via S Marta 3, I-50139 Florence, Italy
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44780 Bochum, Germany
关键词
Geodesics; Extension of spacetimes; Geodesics in weak regularity;
D O I
10.1007/s10455-019-09681-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for continuous Lorentz-Finsler spaces timelike completeness implies inextendibility. Furthermore, we prove that under suitable locally Lipschitz conditions on the Finsler fundamental function the continuous causal curves that are locally length maximizing (geodesics) have definite causal character, either lightlike almost everywhere or timelike almost everywhere. These results generalize previous theorems by Galloway, Ling and Sbierski, and by Graf and Ling.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 13 条
[11]   STRONG DERIVATIVES AND INVERSE MAPPINGS [J].
NIJENHUIS, A .
AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (09) :969-980
[12]   THE C0-INEXTENDIBILITY OF THE SCHWARZSCHILD SPACETIME AND THE SPACELIKE DIAMETER IN LORENTZIAN GEOMETRY [J].
Sbierski, Jan .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 108 (02) :319-378
[13]  
Whitney H, 1934, T AM MATH SOC, V36, P63, DOI 10.2307/1989708