Some regularity results for Lorentz-Finsler spaces

被引:17
作者
Minguzzi, E. [1 ]
Suhr, S. [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Via S Marta 3, I-50139 Florence, Italy
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44780 Bochum, Germany
关键词
Geodesics; Extension of spacetimes; Geodesics in weak regularity;
D O I
10.1007/s10455-019-09681-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for continuous Lorentz-Finsler spaces timelike completeness implies inextendibility. Furthermore, we prove that under suitable locally Lipschitz conditions on the Finsler fundamental function the continuous causal curves that are locally length maximizing (geodesics) have definite causal character, either lightlike almost everywhere or timelike almost everywhere. These results generalize previous theorems by Galloway, Ling and Sbierski, and by Graf and Ling.
引用
收藏
页码:597 / 611
页数:15
相关论文
共 13 条
[1]  
Aubin J. P., 1984, GRUNDLEHREN MATH WIS
[2]   Lyapounov Functions of Closed Cone Fields: From Conley Theory to Time Functions [J].
Bernard, Patrick ;
Suhr, Stefan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (02) :467-498
[3]   The annoying null boundaries [J].
Chrusciel, Piotr T. ;
Klinger, Paul .
NON-REGULAR SPACETIME GEOMETRY, 2018, 968
[4]   On Lorentzian causality with continuous metrics [J].
Chrusciel, Piotr T. ;
Grant, James D. E. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (14)
[5]   Timelike Completeness as an Obstruction to C 0-Extensions [J].
Galloway, Gregory J. ;
Ling, Eric ;
Sbierski, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (03) :937-949
[6]  
Galloway GJ, 2017, ANN HENRI POINCARE, V18, P3427, DOI 10.1007/s00023-017-0602-1
[7]   Maximizers in Lipschitz spacetimes are either timelike or null [J].
Graf, Melanie ;
Ling, Eric .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (08)
[8]   Inextendibility of spacetimes and Lorentzian length spaces [J].
Grant, James D. E. ;
Kunzinger, Michael ;
Saemann, Clemens .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) :133-147
[9]   Lorentzian length spaces [J].
Kunzinger, Michael ;
Saemann, Clemens .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) :399-447
[10]   Causality theory for closed cone structures with applications [J].
Minguzzi, Ettore .
REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (05)