Lipschitz-free spaces and Schur properties

被引:12
作者
Petitjean, C. [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
Lipschitz-free spaces; Schur property; Compact metric spaces; Proper metric spaces; Quasi-Banach spaces; Approximation property; FREE BANACH-SPACES; METRIC-SPACES; APPROXIMATION PROPERTIES; SUBSPACES;
D O I
10.1016/j.jmaa.2017.04.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study l(1)-like properties for some Lipschitz-free spaces. The main result states that, under some natural conditions, the Lipschitz-free space over a proper metric space linearly embeds into an l(1)-sum of finite dimensional subspaces of itself. We also give a sufficient condition for a Lipschitz-free space to have the Schur property, the 1-Schur property and the 1-strong Schur property respectively. We finish by studying those properties on a new family of examples, namely the Lipschitz-free spaces over metric spaces originating from p-Banach spaces, for p in (0,1). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:894 / 907
页数:14
相关论文
共 28 条
[1]   Lipschitz structure of quasi-Banach spaces [J].
Albiac, F. ;
Kalton, N. J. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :317-335
[2]   THE HEREDITARY DUNFORD-PETTIS PROPERTY ON C(K,E) [J].
CEMBRANOS, P .
ILLINOIS JOURNAL OF MATHEMATICS, 1987, 31 (03) :365-373
[3]   ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES [J].
Cuth, Marek ;
Doucha, Michal ;
Wojtaszczyk, Przemyslaw .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) :3833-3846
[4]   Free Spaces Over Some Proper Metric Spaces [J].
Dalet, A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) :973-986
[5]   Characterization of metric spaces whose free space is isometric to l1* [J].
Dalet, Aude ;
Kaufmann, Pedro L. ;
Prochazka, Antonin .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) :391-400
[6]  
Garcia-Lirola L., 2016, ARXIV160605999
[7]   TREE METRICS AND THEIR LIPSCHITZ-FREE SPACES [J].
Godard, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) :4311-4320
[8]   Lipschitz-free Banach spaces [J].
Godefroy, G ;
Kalton, NJ .
STUDIA MATHEMATICA, 2003, 159 (01) :121-141
[9]  
Godefroy G, 1996, J REINE ANGEW MATH, V471, P43
[10]  
Godefroy G., 2015, COMMENT MATH HELV, V55, P89, DOI DOI 10.14708/CM.V55I2.1104(CIT.ONP.14