SH2 domains are protein modules which bind tyrosine phosphorylated sequences in many signaling pathways. These domains contain two regions with specialized functions: residues in one region form a deep pocket into which the phosphotyrosine of the target inserts, while the other region contains the so-called "specificity determining residues" which interact with the three residues C-terminal to the phosphotyrosine in the target. Here, titration calorimetry and site-directed mutagenesis have been used to probe the importance of eight specificity determining residues of the SH2 domain of the Src kinase involved in contacts with its tyrosine phosphorylated consensus peptide target (sequence pYEEI where pY indicates a phosphotyrosine). Mutating six of these eight residues to Ala individually, resulted in a threefold or less loss in binding affinity; hence the majority of the residues in the specificity determining region are by themselves of minimal importance for binding. Two residues were found to have significant effects on binding: Tyr beta D5 and Lys beta D3. Tyr beta D5 was the most crucial residue as evidenced by the 30-fold loss in affinity when Tyr beta D5 is mutated to he. However, while this mutation eliminated the specificity of the Src SH2 domain for the pYEEI peptide sequence, it was not sufficient to switch the specificity of the Src SH2 domain to that of a related SH2 domain which has an lie at the beta D5 position. Mutation of Lys beta D3 to an Ala residue resulted in a modest reduction in binding affinity (sevenfold). It is interesting that this mutation resulted in a change of specificity affecting the selection of the +1 position residue C-terminal to the phosphotyrosine. Except for the Lys beta D3 - +1 Glu interaction which is significantly coupled, only weak energetic coupling was observed across the binding interface, as assessed using double mutant cycles. The results of this study suggest that interactions involving the specificity determining region of SH2 domains may be insufficient by themselves to target single SH2 domains to particular phosphorylated sites. (C) 2000 Academic Press.