Strong solutions to the incompressible Navier-Stokes equations in the half-space

被引:22
作者
Cannone, M [1 ]
Planchon, F
Schonbek, M
机构
[1] Univ Paris 07, UFR Math, F-75251 Paris 05, France
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris, France
[3] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[4] Grad Sch Polymath, Nagoya, Aichi, Japan
关键词
D O I
10.1080/03605300008821536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an exact formula for solutions to the Stokes equations in the half-space with an external forcing term. This formula is used to establish local and global existence and uniqueness in a suitable Besov space for solutions to the Navier-Stokes equations. In particular, well-posedness is proved for initial data in L-3(R-+(3)).
引用
收藏
页码:903 / 924
页数:22
相关论文
共 21 条
[1]  
[Anonymous], ADV DIFFERENTIAL EQU
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]   Self-similar solutions for Navier-Stokes equations in R(3) [J].
Cannone, M ;
Planchon, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (1-2) :179-193
[4]  
Cannone M., 1995, ONDELETTES PARAPRODU
[5]  
CANNONE M, UNPUB SELF SIMILAR S
[6]  
CANNONE M, IN PRESS REV MAT IBE
[7]  
DEPAUW N, 1998, THESIS U PARIS NORD
[8]   On estimates in Hardy spaces for the Stokes flow in a half space [J].
Giga, Y ;
Matsui, S ;
Shimizu, Y .
MATHEMATISCHE ZEITSCHRIFT, 1999, 231 (02) :383-396
[10]  
KATO T, 1962, REND SEMIN MAT U PAD, V32, P243