Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana

被引:82
|
作者
Miao, Hongxia [1 ]
Sun, Peiguang [2 ]
Liu, Qing [3 ]
Miao, Yulu [1 ,4 ]
Liu, Juhua [1 ]
Zhang, Kaixing [1 ]
Hu, Wei [1 ]
Zhang, Jianbin [1 ]
Wang, Jingyi [1 ]
Wang, Zhuo [1 ]
Jia, Caihong [1 ]
Xu, Biyu [1 ]
Jin, Zhiqiang [1 ,2 ]
机构
[1] Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Minist Agr, Key Lab Trop Crop Biotechnol, Haikou 571101, Peoples R China
[2] Chinese Acad Trop Agr Sci, Haikou Expt Stn, Key Lab Genet Improvement Bananas, Haikou 570102, Peoples R China
[3] CSIRO Agr & Food, GPO Box 1600, Canberra, ACT 2601, Australia
[4] Hainan Univ, Dept Agr, Haikou 570228, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
TRANSPORTER GENE FAMILY; SUCROSE TRANSPORTERS; EXPRESSION ANALYSIS; SUGAR TRANSPORTERS; PHLOEM; IDENTIFICATION; TRANSCRIPTOME; INSIGHTS; CARBON; LOCALIZATION;
D O I
10.1038/s41598-017-03872-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sugars Will Eventually be Exported Transporters (SWEET) are a novel type of sugar transporter that plays crucial roles in multiple biological processes. From banana, for the first time, 25 SWEET genes which could be classified into four subfamilies were identified. Majority of MaSWEETs in each subfamily shared similar gene structures and conserved motifs. Comprehensive transcriptomic analysis of two banana genotypes revealed differential expression patterns of MaSWEETs in different tissues, at various stages of fruit development and ripening, and in response to abiotic and biotic stresses. More than 80% MaSWEETs were highly expressed in BaXi Jiao (BX, Musa acuminata AAA group, cv. Cavendish), in sharp contrast to Fen Jiao (FJ, M. acuminata AAB group) when pseudostem was first emerged. However, MaSWEETs in FJ showed elevated expression under cold, drought, salt, and fungal disease stresses, but not in BX. Interaction networks and co-expression assays further revealed that MaSWEET-mediated networks participate in fruit development signaling and abiotic/biotic stresses, which was strongly activated during early stage of fruit development in BX. This study provides new insights into the complex transcriptional regulation of SWEETs, as well as numerous candidate genes that promote early sugar transport to improve fruit quality and enhance stress resistance in banana.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana
    Hongxia Miao
    Peiguang Sun
    Qing Liu
    Yulu Miao
    Juhua Liu
    Kaixing Zhang
    Wei Hu
    Jianbin Zhang
    Jingyi Wang
    Zhuo Wang
    Caihong Jia
    Biyu Xu
    Zhiqiang Jin
    Scientific Reports, 7
  • [2] The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses
    Miao, Hongxia
    Sun, Peiguang
    Liu, Qing
    Liu, Juhua
    Xu, Biyu
    Jin, Zhiqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (08)
  • [3] Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana
    Hu, Wei
    Wang, Lianzhe
    Tie, Weiwei
    Yan, Yan
    Ding, Zehong
    Liu, Juhua
    Li, Meiying
    Peng, Ming
    Xu, Biyu
    Jin, Zhiqiang
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana
    Wei Hu
    Lianzhe Wang
    Weiwei Tie
    Yan Yan
    Zehong Ding
    Juhua Liu
    Meiying Li
    Ming Peng
    Biyu Xu
    Zhiqiang Jin
    Scientific Reports, 6
  • [5] Genome-wide analyses of Ariadne family genes reveal their involvement in abiotic stress responses in apple
    Mei, Quanlin
    Li, Ming
    Chen, Jing
    Yang, Jiaxin
    Duan, Dingyue
    Yang, Jie
    Ma, Fengwang
    Mao, Ke
    GENE, 2025, 935
  • [6] Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana
    Li, Meiying
    Ren, Licheng
    Xu, Biyu
    Yang, Xiaoliang
    Xia, Qiyu
    He, Pingping
    Xiao, Susheng
    Guo, Anping
    Hu, Wei
    Jin, Zhiqiang
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [7] Genome-wide identification of the MAPK gene family in turbot and its involvement in abiotic and biotic stress responses
    Zheng, Weiwei
    Xu, Xi-wen
    Zechen, E.
    Liu, Yingjie
    Chen, Songlin
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [8] Genome-wide identification and expression analyses of SWEET gene family reveal potential roles in plant development, fruit ripening and abiotic stress responses in cranberry ( Vaccinium macrocarpon Ait)
    Chen, Li
    Cai, Mingyu
    Liu, Jiaxin
    Jiang, Xuxin
    Liu, Jiayi
    Wang, Zhenxing
    Wang, Yunpeng
    Li, Yadong
    PEERJ, 2024, 12
  • [9] Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses
    Xiaofang Jin
    Dan Cao
    Zhongjie Wang
    Linlong Ma
    Kunhong Tian
    Yanli Liu
    Ziming Gong
    Xiangxiang Zhu
    Changjun Jiang
    Yeyun Li
    Scientific Reports, 9
  • [10] Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses
    Jin, Xiaofang
    Cao, Dan
    Wang, Zhongjie
    Ma, Linlong
    Tian, Kunhong
    Liu, Yanli
    Gong, Ziming
    Zhu, Xiangxiang
    Jiang, Changjun
    Li, Yeyun
    SCIENTIFIC REPORTS, 2019, 9 (1)