Existence and symmetry of least energy solutions for a class of quasi-linear elliptic equations

被引:10
作者
Jeanjean, Louis [1 ]
Squassina, Marco [2 ]
机构
[1] Univ Franche Comte, UMR 6623, Math Lab, F-25030 Besancon, France
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 05期
关键词
Least energy solutions; Radial symmetry; Quasi-linear equations; Nonsmooth critical point theory; Pucci-Serrin variational identity; CRITICAL-POINT THEORY; INTEGRAL FUNCTIONALS; LOWER SEMICONTINUITY; FIELD-EQUATIONS; REGULARITY; CALCULUS; IDENTITY; MINIMUM;
D O I
10.1016/j.anihpc.2008.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a general class of autonomous quasi-linear elliptic equations on R(n) we prove the existence of a least energy solution and show that all least energy solutions do not change sign and are radially symmetric up to a translation in R(n). (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1701 / 1716
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 1993, Topol. Methods Nonlinear Anal., DOI DOI 10.12775/TMNA.1993.012
[2]  
[Anonymous], 2000, Advances in Diff. Equat.
[3]  
[Anonymous], NATO ASI SER C-MATH
[4]  
[Anonymous], 1975, Abh. Math. Semin. Hamb.
[5]  
[Anonymous], 1966, SEMINAIRE MATH SUPER
[6]  
[Anonymous], 1995, Topol. Methods Nonlinear Anal.
[7]   Critical points for multiple integrals of the calculus of variations [J].
Arcoya, D ;
Boccardo, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 134 (03) :249-274
[8]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597