Rings in which every ideal is pure-projective or FP-projective

被引:8
作者
Moradzadeh-Dehkordi, A. [1 ,2 ]
Shojaee, S. H. [2 ]
机构
[1] Univ Shahreza, Fac Basic Sci, POB 86149-56841, Shahreza, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Pure-projective module; FP-projective module; FP-injective module; Left hereditary ring; Left coherent ring; MODULES; PURITY; SUMS;
D O I
10.1016/j.jalgebra.2017.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is said to be left pure-hereditary (resp. RD-hereditary) if every left ideal of R is pure-projective (resp. RD-projective). In this paper, some properties and examples of these rings, which are nontrivial generalizations of hereditary rings, are given. For instance, we show that if R is a left RD-hereditary left nonsingular ring, then R is left Noetherian if and only if u.dim(R-R) < infinity. Also, we show that a ring R is quasi-Frobenius if and only if R is a left FGF, left coherent right pure-injective ring. A ring R is said to be left FP-hereditary if every left ideal of R is FP-projective. It is shown that if R is a left CF ring, then R is left Noetherian if and only if R is left pure-hereditary, if and only if R is left FP-hereditary, if and only if R is left coherent. It is shown that every left self-injective left FP-hereditary ring is semiperfect. Finally, it is shown that a ring R is left FP-hereditary (resp. left coherent) if and only if every submodule (resp. finitely generated submodule) of a projective left R-module is FP-projective, if and only if every pure factor module of an injective left R-module is injective (resp. FP-injective), if and only if for each FP-injective left R-module U, E(U)/U is injective (resp. FP-injective). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:419 / 436
页数:18
相关论文
共 24 条
[1]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[2]   ON FC-PURITY AND I-PURITY OF MODULES AND KOTHE RINGS [J].
Behboodi, M. ;
Ghorbani, A. ;
Moradzadeh-Dehkordi, A. ;
Shojaee, S. H. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (05) :2061-2081
[3]   C-PURE PROJECTIVE MODULES [J].
Behboodi, M. ;
Ghorbani, A. ;
Moradzadeh-Dehkordi, A. ;
Shojaee, S. H. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) :4559-4575
[4]  
Cohn PM., 1989, B AM MATH SOC, V21, P139, DOI DOI 10.1090/S0273-0979-1989-15797-2
[5]  
Enochs E., 1976, CANAD MATH B, V19, P361, DOI [10.4153/CMB-1976-054-5, DOI 10.4153/CMB-1976-054-5]
[6]   Rings over which every RD-projective module is a direct sums of cyclically presented modules [J].
Facchini, Alberto ;
Moradzadeh-Dehkordi, Ali .
JOURNAL OF ALGEBRA, 2014, 401 :179-200
[7]  
Hiremath V.A., 2009, INT J ALGEBRA, V3, P125
[8]  
Kirichenko V. V., 1984, J MATH SCI, V27, P2933
[9]  
LAM TY, 1999, GRAD TEXT M, V189, pR7
[10]   ABSOLUTELY PURE MODULES [J].
MADDOX, BH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (01) :155-&