A quantitative computational model for complete partial metric spaces via formal balls

被引:85
作者
Romaguera, Salvador [1 ]
Valero, Oscar [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46071 Valencia, Spain
[2] Univ Islas Baleares, Dept Ciencias Matemat & Informat, Palma de Mallorca 07122, Baleares, Spain
关键词
SEMI-LIPSCHITZ FUNCTIONS; DOMAIN THEORY; PARTIAL METRIZABILITY; APPROXIMATION;
D O I
10.1017/S0960129509007671
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a partial metric space (X, p), we use (BX, subset of(dp)) to denote the poset of formal balls of the associated quasi-metric space (X,d(p)). We obtain characterisations of complete partial metric spaces and sup-separable complete partial metric spaces in terms of domain-theoretic properties of (BX, subset of(dp)) In particular, we prove that a partial metric space (X, p) is complete if and only if the poset (BX, subset of(dp)) is a domain. Furthermore, for any complete partial metric space (X,p), we construct a Smyth complete quasi-metric q on BX that extends the quasi-metric d(p) such that both the Scott topology and the partial order subset of(dp) are induced by q. This is done using the partial quasi-metric concept recently introduced and discussed by H. P. Kunzi, H. Pajoohesh and M. P. Schellekens (Kunzi et, al. 2006). Our approach, which is inspired by methods due to A. Edalat and R. Heckmann (Edalat and Heckmann 1998), generalises to partial metric spaces the constructions given by R. Heckmann (Heckmann 1999) and J. J. M. M. Rutten (Rutten 1998) for metric spaces.
引用
收藏
页码:541 / 563
页数:23
相关论文
共 38 条
  • [1] ALIAKBARI M, 2009, MATH STRUCT IN PRESS
  • [2] DYNAMICAL-SYSTEMS, MEASURES, AND FRACTALS VIA DOMAIN THEORY
    EDALAT, A
    [J]. INFORMATION AND COMPUTATION, 1995, 120 (01) : 32 - 48
  • [3] A computational model for metric spaces
    Edalat, A
    Heckmann, R
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 193 (1-2) : 53 - 73
  • [4] Computable Banach spaces via domain theory
    Edalat, A
    Sünderhauf, P
    [J]. THEORETICAL COMPUTER SCIENCE, 1999, 219 (1-2) : 169 - 184
  • [5] ENGELKING R, 1977, MONOGRAFIE MAT, V60
  • [6] FLAGG B, 1997, ELECT NOTES THEORETI, V6, P151, DOI DOI 10.1016/S1571-0661(05)80164-1
  • [7] Fletcher P, 1982, Quasi-Uniform Spaces
  • [8] Sequence spaces and asymmetric norms in the theory of computational complexity
    García-Raffi, LM
    Romaguera, S
    Sánchez-Pérez, EA
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (1-2) : 1 - 11
  • [9] Gierz G., 2003, ENCYCL MATH
  • [10] Approximation of metric spaces by partial metric spaces
    Heckmann, R
    [J]. APPLIED CATEGORICAL STRUCTURES, 1999, 7 (1-2) : 71 - 83