Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO2 reduction

被引:142
作者
Zhang, Guoqiang [1 ,2 ]
Wang, Zhiqi [1 ]
Wu, Jinhu [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biefuels, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Heterojunctions;
D O I
10.1039/d0nr08442e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The continuous growth of fossil fuel consumption and large amounts of CO2 emissions have caused global energy crisis and climate change. The employment of semiconductor photocatalysts to convert CO2 into value-added products has attracted extensive attention and research worldwide in recent years. However, it is difficult for a single-component semiconductor photocatalyst to achieve this goal efficiently due to its drawbacks, such as low quantum efficiency, limited surface area, limited number of active sites, the short lifetime of photogenerated carriers, poor long-term stability, and the weak redox ability of carriers. Fortunately, inspired by photosynthesis, the construction of an artificial Z-scheme heterojunction has brought a new dawn for the realization of this goal. The Z-scheme heterojunction has a high separation efficiency of electron-hole pairs with strong redox ability and a wide light response range. The abovementioned advantages make the Z-scheme heterojunction provide a great opportunity for the conversion of CO2 to value-added chemicals. This review concisely reports the progress of the Z-scheme heterojunction in the field of photocatalytic CO2 reduction in recent years, photocatalytic mechanism, choice of oxidation and reduction systems, strategies for improving efficiency, confirmation of the Z-scheme charge transport mechanism, problems and challenges, and the prospects for the future.
引用
收藏
页码:4359 / 4389
页数:31
相关论文
共 191 条
[1]   Visible-Light-Induced Water Splitting Based on Two-Step Photoexcitation between Dye-Sensitized Layered Niobate and Tungsten Oxide Photocatalysts in the Presence of a Triiodide/Iodide Shuttle Redox Mediator [J].
Abe, Ryu ;
Shinmei, Kenichi ;
Koumura, Nagatoshi ;
Hara, Kohjiro ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (45) :16872-16884
[2]   Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion [J].
Aguirre, Matias E. ;
Zhou, Ruixin ;
Eugene, Alexis J. ;
Guzman, Marcelo I. ;
Grela, Maria A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :485-493
[3]   Photocatalytic CO2 Reduction to C2+Products [J].
Albero, Josep ;
Peng, Yong ;
Garcia, Hermenegildo .
ACS CATALYSIS, 2020, 10 (10) :5734-5749
[4]   g-C3N4/Bi4O5I2 heterojunction with I3-/I- redox mediator for enhanced photocatalytic CO2 conversion [J].
Bai, Yang ;
Ye, Liqun ;
Wang, Li ;
Shi, Xian ;
Wang, Pingquan ;
Bai, Wei ;
Wong, Po Keung .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 194 :98-104
[5]   Dimension-Matched Zinc Phthalocyanine/BiVO4 Ultrathin Nanocomposites for CO2 Reduction as Efficient Wide-Visible-Light-Driven Photocatalysts via a Cascade Charge Transfer [J].
Bian, Ji ;
Feng, Jiannan ;
Zhang, Ziqing ;
Li, Zhijun ;
Zhang, Yuhang ;
Liu, Yadi ;
Ali, Sharafat ;
Qu, Yang ;
Bai, Linlu ;
Xie, Jijia ;
Tang, Dongyan ;
Li, Xin ;
Bai, Fuquan ;
Tang, Junwang ;
Jing, Liqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (32) :10873-10878
[6]   Gold nanorod-based localized surface plasmon resonance biosensors: A review [J].
Cao, Jie ;
Sun, Tong ;
Grattan, Kenneth T. V. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 :332-351
[7]   Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4 [J].
Cao, Shaowen ;
Li, Yao ;
Zhu, Bicheng ;
Jaroniec, Mietek ;
Yu, Jiaguo .
JOURNAL OF CATALYSIS, 2017, 349 :208-217
[8]   In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity [J].
Chai, Bo ;
Liu, Chun ;
Yan, Juntao ;
Ren, Zhandong ;
Wang, Zhou-jun .
APPLIED SURFACE SCIENCE, 2018, 448 :1-8
[9]   CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J].
Chang, Xiaoxia ;
Wang, Tuo ;
Gong, Jinlong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2177-2196
[10]   Insight into visible light-driven photocatalytic performance of direct Z-scheme Bi2WO6/BiOI composites constructed in -situ [J].
Chen, Jiufu ;
Hu, Chuan ;
Deng, Zhao ;
Gong, Xiaoping ;
Su, Yang ;
Yang, Qi ;
Zhong, Junbo ;
Li, Jianzhang ;
Duan, Ran .
CHEMICAL PHYSICS LETTERS, 2019, 716 :134-141