An evolutionary algorithm for constrained multi-objective optimization problems

被引:0
|
作者
Min, Hua-Qing [1 ,2 ]
Zhou, Yu-Ren [2 ]
Lu, Yan-Sheng [1 ]
Jiang, Jia-zhi [2 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Comp Sci & Engn, Wuhan 430074, Peoples R China
[2] South China Univ Technol, Sch Engn & Comp Sci, Guangzhou 510640, Peoples R China
来源
APSCC: 2006 IEEE ASIA-PACIFIC CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS | 2006年
关键词
evolutionary algorithms; multi-objective optimization; constrained;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Constrained multi-objective optimization problems (CMOP) are challenging and difficult to solve. In this paper, a simple and practical evolutionary algorithm for constrained multi-objective optimization problems (EA CMOP) is presented, by defining constraints using non-parameter punitive functions, using Pareto strength value to represent Pareto order strength among individuals and using crowding density to ensure group diversity. It defines the evolutionary algorithm fitness functions by combining constraint treatment, comparison of Pareto strength optimization and crowding density. Test results on several benchmark functions showed that the approach is effective and robust.
引用
收藏
页码:667 / +
页数:2
相关论文
共 50 条
  • [1] Multi-objective evolutionary algorithm based on preference for constrained optimization problems
    Dong, Ning
    Wang, Yuping
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2014, 41 (01): : 98 - 104+188
  • [2] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98
  • [3] MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
    Tharwat, Alaa
    Houssein, Essam H.
    Ahmed, Mohammed M.
    Hassanien, Aboul Ella
    Gabel, Thomas
    APPLIED INTELLIGENCE, 2018, 48 (08) : 2268 - 2283
  • [4] A Multi-Objective Evolutionary Algorithm Based on Bilayered Decomposition for Constrained Multi-Objective Optimization
    Yasuda, Yusuke
    Kumagai, Wataru
    Tamura, Kenichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (02) : 244 - 262
  • [5] A Modified Algorithm for Multi-objective Constrained Optimization Problems
    Peng, Lin
    Mao, Zhizhong
    Yuan, Ping
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 207 - 212
  • [6] A double auxiliary optimization constrained multi-objective evolutionary algorithm
    Yang, Yongkuan
    Yan, Bing
    Kong, Xiangsong
    Zhao, Jing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 567 - 579
  • [7] BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems
    Li, Xiang
    Du, Gang
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 282 - 302
  • [8] A dynamic dual-population co-evolution multi-objective evolutionary algorithm for constrained multi-objective optimization problems
    Kong, Xiangsong
    Yang, Yongkuan
    Lv, Zhisheng
    Zhao, Jing
    Fu, Rong
    APPLIED SOFT COMPUTING, 2023, 141
  • [9] MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
    Alaa Tharwat
    Essam H. Houssein
    Mohammed M. Ahmed
    Aboul Ella Hassanien
    Thomas Gabel
    Applied Intelligence, 2018, 48 : 2268 - 2283
  • [10] A novel two-phase evolutionary algorithm for solving constrained multi-objective optimization problems
    Wang, Yanping
    Liu, Yuan
    Zou, Juan
    Zheng, Jinhua
    Yang, Shengxiang
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75