Automatic Software and Computing Hardware Codesign for Predictive Control

被引:9
作者
Khusainov, Bulat [1 ]
Kerrigan, Eric C. [1 ,2 ]
Constantinides, George A. [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Imperial Coll London, Dept Aeronaut, London SW7 2AZ, England
关键词
Design automation; field-programmable gate array (FPGA); hardware-software codesign; model predictive control (MPC); multiobjective optimization (MOO); MULTIOBJECTIVE OPTIMIZATION; NMPC CONTROLLERS; ALGORITHM; DESIGN;
D O I
10.1109/TCST.2018.2855666
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model predictive control (MPC) is a computationally demanding control technique that allows dealing with multiple-input and multiple-output systems while handling constraints in a systematic way. The necessity of solving an optimization problem at every sampling instant often 1) limits the application scope to slow dynamical systems and/or 2) results in expensive computational hardware implementations. Traditional MPC design is based on the manual tuning of software and computational hardware design parameters, which leads to suboptimal implementations. This brief proposes a framework for automating the MPC software and computational hardware codesign while achieving an optimal tradeoff between computational resource usage and controller performance. The proposed approach is based on using a biobjective optimization algorithm, namely BiMADS. Two test studies are considered: a central processing unit and field-programmable gate array implementations of fast gradient-based MPC. Numerical experiments show that the optimization-based design outperforms Latin hypercube sampling, a statistical sampling-based design exploration technique.
引用
收藏
页码:2295 / 2304
页数:10
相关论文
共 34 条
  • [1] [Anonymous], 2004, INTRO LECT CONVEX OP
  • [2] Mesh adaptive direct search algorithms for constrained optimization
    Audet, C
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) : 188 - 217
  • [3] Audet C., 2009, G200937
  • [4] Multiobjective optimization through a series of single-objective formulations
    Audet, Charles
    Savard, Gilles
    Zghal, Walid
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 188 - 210
  • [5] A PROGRESSIVE BARRIER FOR DERIVATIVE-FREE NONLINEAR PROGRAMMING
    Audet, Charles
    Dennis, J. E., Jr.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 445 - 472
  • [6] Controlling the level of sparsity in MPC
    Axehill, Daniel
    [J]. SYSTEMS & CONTROL LETTERS, 2015, 76 : 1 - 7
  • [7] Continuity and monotonicity of the MPC value function with respect to sampling time and prediction horizon
    Bachtiar, Vincent
    Kerrigan, Eric C.
    Moase, William H.
    Manzie, Chris
    [J]. AUTOMATICA, 2016, 63 : 330 - 337
  • [8] Buchstaller D., 2011, IFAC P VOLUMES, V44, P7523
  • [9] Conn A.., 2009, Introduction to Derivative-Free Optimization
  • [10] DIRECT MULTISEARCH FOR MULTIOBJECTIVE OPTIMIZATION
    Custodio, A. L.
    Madeira, J. F. A.
    Vaz, A. I. F.
    Vicente, L. N.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 1109 - 1140