Intermittent random walks for an optimal search strategy: one-dimensional case

被引:68
作者
Oshanin, G.
Wio, H. S.
Lindenberg, K.
Burlatsky, S. F.
机构
[1] Univ Paris 06, UMR 7600, F-75252 Paris, France
[2] Max Planck Inst Met Res, Dept Inhomogeneous Condensed Matter Theory, D-70569 Stuttgart, Germany
[3] Inst Fis Cantabria, E-39005 Santander, Spain
[4] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
[6] United Technol Corp, United Technol Res Ctr, E Hartford, CT 06108 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0953-8984/19/6/065142
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori information about where it is, and may detect it only upon encounter. The searchers perform random walks in discrete time n = 0, 1, 2,..., N, where N is the maximal time the search process is allowed to run. With probability a the searchers step on a nearest-neighbour, and with probability (1-alpha) they leave the lattice and stay off until they land back on the lattice at a fixed distance L away from the departure point. The random walk is thus intermittent. We calculate the probability P-N that the target remains undetected up to the maximal search time N, and seek to minimize this probability. We find that P-N is a non-monotonic function of alpha, and show that there is an optimal choice alpha(opt)(N) of a well within the intermittent regime, 0 < alpha(opt)(N) < 1, whereby P-N can be orders of magnitude smaller compared to the 'pure' random walk cases alpha = 0 and alpha = 1.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
[Anonymous], 1995, RANDOM WALKS RANDOM, DOI [DOI 10.1079/PNS19950063, 10.1079/PNS19950063]
[2]   Optimizing the encounter rate in biological interactions: Levy versus Brownian strategies (vol 88, art no 097901, 2002) [J].
Bartumeus, F ;
Catalan, J ;
Fulco, UL ;
Lyra, ML ;
Viswanathan, GM .
PHYSICAL REVIEW LETTERS, 2002, 89 (10)
[3]   Optimizing the encounter rate in biological interactions: Levy versus Brownian strategies [J].
Bartumeus, F ;
Catalan, J ;
Fulco, UL ;
Lyra, ML ;
Viswanathan, GM .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4
[4]  
Bell J. B., 1991, SEARCHING BEHAV BEHA
[5]   A minimal model of intermittent search in dimension two [J].
Benichou, O. ;
Loverdo, C. ;
Moreau, M. ;
Voituriez, R. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
[6]   A stochastic model for intermittent search strategies [J].
Bénichou, O ;
Coppey, M ;
Moreau, M ;
Suet, PH ;
Voituriez, R .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (49) :S4275-S4286
[7]   Optimal search strategies for hidden targets -: art. no. 198101 [J].
Bénichou, O ;
Coppey, M ;
Moreau, M ;
Suet, PH ;
Voituriez, R .
PHYSICAL REVIEW LETTERS, 2005, 94 (19)
[8]   Averaged residence times of stochastic motions in bounded domains [J].
Bénichou, O ;
Coppey, M ;
Moreau, M ;
Suet, PH ;
Voituriez, R .
EUROPHYSICS LETTERS, 2005, 70 (01) :42-48
[9]   Kinetics of stochastically gated diffusion-limited reactions and geometry of random walk trajectories [J].
Bénichou, O ;
Moreau, M ;
Oshanin, G .
PHYSICAL REVIEW E, 2000, 61 (04) :3388-3406
[10]  
BHATIA DP, 1995, PHYS REV LETT, V75, P586, DOI 10.1103/PhysRevLett.75.586