Stability and dynamics of a fractional order Leslie-Gower prey-predator model

被引:81
作者
Ghaziani, R. Khoshsiar [1 ]
Alidousti, J. [1 ]
Eshkaftaki, A. Bayati [2 ]
机构
[1] Shahrekord Univ, Dept Appl Math & Comp Sci, POB 115, Shahrekord, Iran
[2] Shahrekord Univ, Dept Pure Math, POB 115, Shahrekord, Iran
关键词
Fractional prey-predator model; Stability of equilibrium; Dynamical behavior; Limit cycle; II SCHEMES;
D O I
10.1016/j.apm.2015.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we introduce a fractional order Leslie-Gower prey-predator model, which describes interaction between two populations of prey and predator. We determine stability and dynamical behaviors of the equilibria of this system. The dynamical behaviors consist of quasi periodic and limit cycles. Further by numerical solution of the fractional system and numerical simulations, we reveal more dynamical behaviors of the model. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2075 / 2086
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]  
[Anonymous], 2000, APPL FRACTIONAL CALC
[4]   On a numerical scheme for solving differential equations of fractional order [J].
Atanackovic, T. M. ;
Stankovic, B. .
MECHANICS RESEARCH COMMUNICATIONS, 2008, 35 (07) :429-438
[5]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[6]   MATHEMATICAL-MODELS IN THE ECONOMICS OF RENEWABLE RESOURCES [J].
CLARK, CW .
SIAM REVIEW, 1979, 21 (01) :81-99
[7]  
Das S., 2007, Functional Fractional Calculus for System Identification and Controls
[8]  
Das Tapasi, 2009, Journal of Biological Dynamics, V3, P447, DOI 10.1080/17513750802560346
[9]  
Diethelm K., 2010, LECT NOTES MATH
[10]   Effect of a protection zone in the diffusive Leslie predator-prey model [J].
Du, Yihong ;
Peng, Rui ;
Wang, Mingxin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :3932-3956