Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition

被引:47
作者
Zhang, Xiangyu [1 ]
Zhang, Kexin [1 ,2 ,3 ]
Yoo, Hyeonsuk [4 ]
Lee, Yongjin [1 ,4 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201203, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Inha Univ, Dept Chem & Chem Engn, Educ & Res Ctr Smart Energy & Mat, Incheon 22212, South Korea
基金
中国国家自然科学基金;
关键词
metal-organic framework; recurrent neural network; Monte Carlo tree search; carbon capture; HIGH DELIVERABLE CAPACITY; DESIGN; STABILITY; RESISTANT; MOFS;
D O I
10.1021/acssuschemeng.0c08806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a computational study to design tailor-made metal-organic frameworks (MOFs) for efficient CO2 capture in humid conditions. Target-specific MOFs were generated in our computational platform incorporating the Monte Carlo tree search and recurrent neural networks according to the objective function values that combine three requirements of high adsorption performance, experimental accessibility of designed materials, and good hydrophobicity (i.e., the low Henry coefficient of water in pore space) to be applied in humid conditions. With a given input of 27 different combinations of metal node and topology net information extracted from experimental MOFs, our approach successfully designed promising and novel metal-organic frameworks for CO2 capture, satisfying the three requirements in good balance. Furthermore, the detailed analysis of the structure-property relationship identified that moderate D-i (the diameter of the largest included sphere) of 14.18 A and accessible surface area (ASA) of 1750 m(2)/g values are desirable for high-performing MOFs for CO2 capture, which is attributed to the trade-off relationship between good adsorption selectivity (small pore size is desired) and high adsorption capacity (sufficient pore size is necessary).
引用
收藏
页码:2872 / 2879
页数:8
相关论文
共 50 条
[21]   Multivariate Tuning of Photosensitization in Mixed-Linker Metal-Organic Frameworks for Efficient CO2 Reduction [J].
Yin, Ya ;
Feng, Shijia ;
Xu, Xinyu ;
Liu, Yifan ;
Li, Youcong ;
Gao, Lei ;
Zhou, Xiaocheng ;
Dong, Jiahao ;
Wu, Yulun ;
Su, Jian ;
Zuo, Jing-Lin ;
Yuan, Shuai ;
Zhu, Jia .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (19) :16481-16493
[22]   Metal-organic frameworks for CO2 photoreduction [J].
Zhang, Lei ;
Zhang, Junqing .
FRONTIERS IN ENERGY, 2019, 13 (02) :221-250
[23]   Large-Scale Screening and Machine Learning to Predict the Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Capture from Air [J].
Deng, Xiaomei ;
Yang, Wenyuan ;
Li, Shuhua ;
Liang, Hong ;
Shi, Zenan ;
Qiao, Zhiwei .
APPLIED SCIENCES-BASEL, 2020, 10 (02)
[24]   Discovering Ultra-Stable Metal-Organic Frameworks for CO2 Capture from A Wet Flue Gas: Integrating Machine Learning and Molecular Simulation [J].
Zhang, Zhiming ;
Palakkal, Athulya Surendran ;
Wu, Xiaoyu ;
Jiang, Jianwen ;
Jiang, Zhongyi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (18) :9123-9133
[25]   Machine learning and descriptor selection for the computational discovery of metal-organic frameworks [J].
Mukherjee, Krishnendu ;
Colon, Yamil J. .
MOLECULAR SIMULATION, 2021, 47 (10-11) :857-877
[26]   Interpretable machine learning for accelerating the discovery of metal-organic frameworks for ethane/ethylene separation [J].
Wang, Zihao ;
Zhou, Teng ;
Sundmacher, Kai .
CHEMICAL ENGINEERING JOURNAL, 2022, 444
[27]   Engineering Insights into Tailored Metal-Organic Frameworks for CO2 Capture in Industrial Processes [J].
Mahdavi, Hamidreza ;
Robin, Alice ;
Eden, Nathan T. ;
Khosravanian, Abdollah ;
Sadiq, Muhammad Munir ;
Konstas, Kristina ;
Smith, Stefan J. D. ;
Mulet, Xavier ;
Hill, Matthew R. .
LANGMUIR, 2024, 40 (33) :17387-17395
[28]   Research Progress on CO2 Capture and Catalytic Conversion of Metal-Organic Frameworks Materials [J].
Lei, Yang ;
Xiao, Yangzixuan ;
Chen, Xiaolin ;
Zhang, Wentao ;
Yang, Xue ;
Yang, Hu ;
Fang, De .
CATALYSTS, 2025, 15 (05)
[29]   Structural Engineering of Metal-Organic Frameworks for Efficient CO2 Reduction Reaction [J].
Cheng, Mingjie ;
Zheng, Xiaoli ;
Ma, Fuxiao ;
Zhu, Zhengkai ;
Xu, Qun .
CHEMCATCHEM, 2024, 16 (17)
[30]   Adenine Components in Biomimetic Metal-Organic Frameworks for Efficient CO2 Photoconversion [J].
Li, Ning ;
Liu, Jiang ;
Liu, Jing-Jing ;
Dong, Long-Zhang ;
Xin, Zhi-Feng ;
Teng, Yun-Lei ;
Lan, Ya-Qian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (16) :5226-5231