Lie algebroids, Lie groupoids and TFT

被引:6
作者
Bonechi, Francesco
Zabzine, Maxim
机构
[1] INFN, I-50019 Florence, Italy
[2] Dipartimento Fis, I-50019 Florence, Italy
[3] Uppsala Univ, Dept Theoret Phys, SE-75108 Uppsala, Sweden
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
groupoids; algebroids; moduli space on flat connections; topological field theory;
D O I
10.1016/j.geomphys.2006.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the moduli spaces associated to the solutions of equations of motion (modulo gauge transformations) of the Poisson sigma model with target being an integrable Poisson manifold. The construction can be easily extended to a case of a generic integrable Lie algebroid. Indeed for any Lie algebroid one can associate a BF-like topological field theory which localizes on the space of algebroid morphisms, that can be seen as a generalization of flat connections to the groupoid case. We discuss the finite gauge transformations and discuss the corresponding moduli spaces. We consider the theories both without and with boundaries. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:731 / 744
页数:14
相关论文
共 23 条
[1]  
[Anonymous], ARXIVMATHSG0402347
[2]  
[Anonymous], 1999, BERKELEY MATH LECT N
[3]   TOPOLOGICAL GAUGE-THEORIES OF ANTISYMMETRIC TENSOR-FIELDS [J].
BLAU, M ;
THOMPSON, G .
ANNALS OF PHYSICS, 1991, 205 (01) :130-172
[4]  
BLAU M, ARXIVHEPTH9310144
[5]   Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries [J].
Bojowald, M ;
Kotov, A ;
Strobl, T .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 54 (04) :400-426
[6]   Poisson sigma model over group manifolds [J].
Bonechi, F ;
Zabzine, M .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 54 (02) :173-196
[7]  
BONECHI F, ARXIVMATHSG0507223
[8]  
BRESSLER P, 2005, J MATH SCI, V128
[9]   Poisson reduction and branes in Poisson-Sigma models [J].
Calvo, I ;
Falceto, F .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 70 (03) :231-247
[10]   On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds [J].
Cattaneo, AS .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 67 (01) :33-48