Simplicial cycles and the computation of simplicial trees

被引:8
作者
Caboara, Massimo
Faridi, Sara
Selinger, Peter
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
facet ideal; simplicial tree; simplicial cycle;
D O I
10.1016/j.jsc.2006.03.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We generalize the concept of a cycle from graphs to simplicial complexes. We show that a simplicial cycle is either a sequence of facets connected in the shape of a circle, or is a cone over such a structure. We show that a simplicial tree is a connected cycle-free simplicial complex, and use this characterization to produce an algorithm that checks in polynomial time whether a simplicial complex is a tree. We also present an efficient algorithm for checking whether a simplicial complex is grafted, and therefore Cohen-Macaulay. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 9 条
[1]  
CABOARA M, 2005, P MEGA05 C MAY 27 JU
[2]  
CABOARA M, 2006, PROTOTYPE IMPLEMENTA
[3]  
Faridi S, 2006, LECT NOTES PURE APPL, V244, P85
[4]   Cohen-Macaulay properties of square-free monomial ideals [J].
Faridi, S .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 109 (02) :299-329
[5]   Simplicial trees are sequentially Cohen-Macaulay [J].
Faridi, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 190 (1-3) :121-136
[6]   The facet ideal of a simplicial complex [J].
Faridi, S .
MANUSCRIPTA MATHEMATICA, 2002, 109 (02) :159-174
[7]   ON THE IDEAL THEORY OF GRAPHS [J].
SIMIS, A ;
VASCONCELOS, WV ;
VILLARREAL, RH .
JOURNAL OF ALGEBRA, 1994, 167 (02) :389-416
[8]   COHEN-MACAULAY GRAPHS [J].
VILLARREAL, RH .
MANUSCRIPTA MATHEMATICA, 1990, 66 (03) :277-293
[9]  
ZHENG X, 2004, THESIS U DUISBURG ES