Quantifying the magnitude of pharyngeal obstruction during sleep using airflow shape

被引:43
作者
Mann, Dwayne L. [1 ,2 ,3 ]
Terrill, Philip I. [1 ,2 ,3 ]
Azarbarzin, Ali [2 ,3 ]
Mariani, Sara [2 ,3 ]
Franciosini, Angelo [4 ]
Camassa, Alessandra [5 ]
Georgeson, Thomas [1 ]
Marques, Melania [2 ,3 ,6 ]
Taranto-Montemurro, Luigi [2 ,3 ]
Messineo, Ludovico [2 ,3 ]
Redline, Susan [2 ,3 ]
Wellman, Andrew [2 ,3 ]
Sands, Scott A. [2 ,3 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, GP South, Brisbane, Qld 4072, Australia
[2] Brigham & Womens Hosp, Dept Med, Div Sleep & Circadian Disorders, 75 Francis St, Boston, MA 02115 USA
[3] Harvard Med Sch, 75 Francis St, Boston, MA 02115 USA
[4] Aix Marseille Univ, Inst Neur Timone, Marseille, France
[5] IDIBAPS, Barcelona, Spain
[6] Univ Sao Paulo, Fac Med, HCFMUSP, Lab Sono,Inst Coracao InCor, Sao Paulo, Brazil
基金
美国国家卫生研究院; 英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
RESISTANCE SYNDROME; BLOOD-PRESSURE; NREM SLEEP; LIMITATION; APNEA;
D O I
10.1183/13993003.02262-2018
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Rationale and objectives: Non-invasive quantification of the severity of pharyngeal airflow obstruction would enable recognition of obstructive versus central manifestation of sleep apnoea, and identification of symptomatic individuals with severe airflow obstruction despite a low apnoea-hypopnoea index (AHI). Here we provide a novel method that uses simple airflow-versus-time ("shape") features from individual breaths on an overnight sleep study to automatically and non-invasively quantify the severity of airflow obstruction without oesophageal catheterisation. Methods: 41 individuals with suspected/diagnosed obstructive sleep apnoea (AHI range 0-91 events.h(-1)) underwent overnight polysomnography with gold-standard measures of airflow (oronasal pneumotach: "flow") and ventilatory drive (calibrated intraoesophageal diaphragm electromyogram: "drive"). Obstruction severity was defined as a continuous variable (flow: drive ratio). Multivariable regression used airflow shape features (inspiratory/expiratory timing, flatness, scooping, fluttering) to estimate flow: drive ratio in 136264 breaths (performance based on leave-one-patient-out cross-validation). Analysis was repeated using simultaneous nasal pressure recordings in a subset (n=17). Results: Gold-standard obstruction severity (flow: drive ratio) varied widely across individuals independently of AHI. A multivariable model (25 features) estimated obstruction severity breath-by-breath (R-2=0.58 versus gold-standard, p<0.00001; mean absolute error 22%) and the median obstruction severity across individual patients (R-2=0.69, p<0.00001; error 10%). Similar performance was achieved using nasal pressure. Conclusions: The severity of pharyngeal obstruction can be quantified non-invasively using readily available airflow shape information. Our work overcomes a major hurdle necessary for the recognition and phenotyping of patients with obstructive sleep disordered breathing.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Inspiratory flow shape clustering: An automated method to monitor upper airway performance during sleep
    Aittokallio, Tero
    Malminen, Jani S.
    Pahikkala, Tapio
    Polo, Olli
    Nevalainen, Olli S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 85 (01) : 8 - 18
  • [2] The upper airway in sleep: physiology of the pharynx
    Ayappa, I
    Rapoport, DM
    [J]. SLEEP MEDICINE REVIEWS, 2003, 7 (01) : 9 - 33
  • [3] Non-invasive detection of respiratory effort-related arousals (RERAs) by a nasal cannula/pressure transducer system
    Ayappa, I
    Norman, RG
    Krieger, AC
    Rosen, A
    O'Malley, RL
    Rapoport, DM
    [J]. SLEEP, 2000, 23 (06) : 763 - 771
  • [4] Predicting epiglottic collapse in patients with obstructive sleep apnoea
    Azarbarzin, Ali
    Marques, Melania
    Sands, Scott A.
    de Beeck, Sara Op
    Genta, Pedro R.
    Taranto-Montemurro, Luigi
    de Melo, Camila M.
    Messineo, Ludovico
    Vanderveken, Olivier M.
    White, David P.
    Wellman, Andrew
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2017, 50 (03)
  • [5] Continuous positive airway pressure for central sleep apnea and heart failure
    Bradley, TD
    Logan, AG
    Kimoff, RJ
    Sériès, F
    Morrison, D
    Ferguson, K
    Belenkie, I
    Pfeifer, M
    Fleetham, J
    Hanly, P
    Smilovitch, M
    Tomlinson, G
    Floras, JS
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (19) : 2025 - 2033
  • [6] Autotitrating CPAP - How shall we judge safety and efficacy of a "black box"?
    Brown, Lee K.
    [J]. CHEST, 2006, 130 (02) : 312 - 314
  • [7] Physiological consequences of prolonged periods of flow limitation in patients with sleep apnea hypopnea syndrome
    Calero, G
    Farre, R
    Ballester, E
    Hernandez, L
    Daniel, N
    Canal, JMM
    [J]. RESPIRATORY MEDICINE, 2006, 100 (05) : 813 - 817
  • [8] Camassa A, 2018, 40 ANN INT C IEEE EN
  • [9] Catcheside P, 2014, J SLEEP RES, V2014, P59
  • [10] Catcheside PG, 2014, SLEEP BIOL RHYTHMS, V12, P59